Abstract:
A liquid crystal display device includes upper and lower pixels; gate lines in electrical connection with the adjacent pixels and extending in a row direction, and data lines which cross the gate lines; and a reference voltage line including a vertical portion which passes through the adjacent pixels, and horizontal portions which alternately extend from the vertical portion. Each of the adjacent pixels includes first and second thin film transistors (TFTs) each in electrical connection with a gate line and a data line which correspond to a respective pixel; and a pixel electrode including a first subpixel electrode in connection with an output terminal of the first TFT, and a second subpixel electrode in connection with an output terminal of the second TFT. The horizontal portions of the reference voltage line are in electrical connection with the second subpixel electrodes of the adjacent pixels.
Abstract:
A liquid crystal display device includes upper and lower pixels; gate lines in electrical connection with the adjacent pixels and extending in a row direction, and data lines which cross the gate lines; and a reference voltage line including a vertical portion which passes through the adjacent pixels, and horizontal portions which alternately extend from the vertical portion. Each of the adjacent pixels includes first and second thin film transistors (TFTs) each in electrical connection with a gate line and a data line which correspond to a respective pixel; and a pixel electrode including a first subpixel electrode in connection with an output terminal of the first TFT, and a second subpixel electrode in connection with an output terminal of the second TFT. The horizontal portions of the reference voltage line are in electrical connection with the second subpixel electrodes of the adjacent pixels.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present inventive concept includes a first substrate including a plurality of first color filters, a plurality of second color filters, a plurality of third color filters and a plurality of gate electrodes extending in a first direction;a second substrate facing the first substrate; and a liquid crystal layer formed between the first substrate and the second substrate, wherein the plurality of first color filters include a plurality of first portions extending in a first direction, and a plurality of second portions extending in a second direction substantially perpendicular to the first direction and crossing the plurality of first portions.
Abstract:
A thin film transistor array panel includes a first substrate; a gate line and a data line on the first substrate; a storage electrode line on the first substrate where a constant voltage is applied thereto; a first thin film transistor and a second thin film transistor which are connected to the gate line and the data line; a third thin film transistor which is connected to the gate line, the second thin film transistor and the storage electrode line; a first subpixel electrode which is connected to the first thin film transistor; and a second subpixel electrode which is connected to the second thin film transistor.
Abstract:
A liquid crystal display, the liquid crystal display comprises a plurality of gate lines which includes a first gate line, a transformation gate line, and a second gate line; a data line; and a pixel, wherein the pixel includes a first liquid crystal capacitor which includes a first sub-pixel electrode and a common electrode and a second liquid crystal capacitor which includes a second sub-pixel electrode and a common electrode; a first switching element connected to the first gate line, the data line, and the first sub-pixel electrode; a second switching element connected to the first gate line, the data line, and the second sub-pixel electrode; a third switching element connected to the transformation gate line and the second switching element; a transformation capacitor which includes a first terminal connected to the second gate line and a second terminal connected to the third switching element; and a first period where a gate-on voltage Von is applied to the first gate line and a second period where the gate-on voltage Von is applied to the transformation gate line do not overlap each other and, a gate-off voltage Voff is applied to the second gate line during the second period.
Abstract:
A gate driving circuit includes first to n-th gate clock lines, first to m-th selection lines, a holding control line, a voltage line and a plurality of stages. The first to n-th gate clock lines transfer first to n-th gate clock signals. The first to m-th selection lines transfer first to m-th gate selection signals. The holding control line transfers a holding control signal. The voltage line transfers a gate-off voltage. The stages outputs a plurality of gate signals, each stage outputs a high voltage of a gate clock signal as a gate-on voltage of a gate signal in response to a high voltage of a gate selection signal, and outputs the gate-off voltage in response to a high voltage of the holding control signal.
Abstract:
An alignment layer, a liquid crystal display device, and a method for manufacturing the same. The alignment layer includes a first substance for forming a first main chain and a second substance for forming a second main chain on a substrate. The first substance is bonded to photocuring agents, and the second substance is bonded to vertical alignment groups. The photocuring agents are crosslinked to each other and are aligned at a pretilt angle with respect to the substrate. The vertical alignment groups are aligned substantially vertically to the substrate. The first and second substances are different from each other.
Abstract:
A liquid crystal display includes a plurality of data lines and a plurality of pixels arranged in a matrix, wherein the plurality of pixels include a first pixel and a second pixel, and each of the first pixel and the second pixel includes a first subpixel electrode and a second subpixel electrode, a first switching element, a second switching element, a third switching element, and a voltage-changing capacitor, wherein a first source electrode on the first switching element and a second source electrode on the second switching element from the first pixel are connected to a data line, the first source electrode and the second source electrode of the second pixel are disconnected from the plurality of data lines, and the two terminals of the voltage-changing capacitor of the second pixel are shorted to each other.
Abstract:
A light emitting display device includes: a first driving transistor; a first anode electrically connected to the first driving transistor; a first capacitor electrically connected to a gate electrode of the first driving transistor; a second driving transistor disposed to be adjacent to the first driving transistor; a second anode electrically connected to the second driving transistor; a second capacitor electrically connected to a gate electrode of the second driving transistor; a driving voltage line which applies a driving voltage to the first driving transistor and the second driving transistor; and a first connecting member electrically connecting the gate electrode of the first driving transistor and the first capacitor, where the driving voltage line is disposed between the first connecting member and the second anode in a plan view.
Abstract:
A display device includes: a substrate; a driving voltage line and a data line that are on the substrate; a semiconductor layer that includes a first electrode, a channel, and a second electrode of a driving transistor, the driving transistor being connected to the driving voltage line; a gate electrode of the driving transistor overlapping the channel; a lower storage electrode extending from the gate electrode; and an upper storage electrode overlapping the lower storage electrode, wherein the semiconductor layer further includes a first electrode, a channel, and a second electrode of a switching transistor, the switching electrode being connected between the lower storage electrode and the data line, the upper storage electrode does not overlap the channel of the driving transistor, the lower storage electrode includes a first portion and a second portion that are at opposite sides of the gate electrode.