Abstract:
An organic light-emitting device having a resonance structure includes a substrate; a first electrode and a second electrode on the substrate and facing each other; an emission layer between the first electrode and the second electrode; a first hole transport layer between the first electrode and the emission layer; and a second hole transport layer between the first hole transport layer and the emission layer. An electron mobility of the second hole transport layer is 5 times to 100 times greater than an electron mobility of the first hole transport layer, and a thickness of the second hole transport layer corresponds to a resonance distance of a wavelength of emission light of the emission layer.
Abstract:
A white light-emitting device includes a first electrode; a first barrier rib on the first electrode including a first color conversion material; a second barrier rib on the first electrode spaced apart from the first barrier rib and including a second color conversion material; a third color layer between the first barrier rib and the second barrier rib that emits white light when light emitted from the third color layer is combined with light emitted from first color conversion material and light emitted from the second color conversion material; and a second electrode on the first barrier rib, the second barrier rib, and the third color layer.
Abstract:
In an aspect, an organic light-emitting display apparatus including: a substrate; at least one color filter formed on the substrate; an overcoat layer covering the at least one color filter; a first passivation layer formed on the overcoat layer; a light scattering layer formed on the first passivation layer; a first electrode formed on the light scattering layer; a second electrode facing the first electrode; and an organic layer located between the first and second electrodes is provided.
Abstract:
An apparatus for compensating for a skew is provided between data signals supplied through a plurality of data lines and a clock signal supplied through a clock line. A skew compensation apparatus includes a plurality of data receivers each configured to delay a data signal supplied through a corresponding data line based on associated phase difference data and to output the delayed data signal, a clock receiver configured to receive a clock signal supplied through a clock line, and a phase controller configured to select any one of the plurality of data receivers and to output, to the selected data receiver, a phase control signal configured to correct the phase difference data of the selected data receiver based on the phase difference between a data signal output from the selected data receiver and the clock signal.
Abstract:
A white light-emitting device includes a first electrode; a first barrier rib on the first electrode including a first color conversion material; a second barrier rib on the first electrode spaced apart from the first barrier rib and including a second color conversion material; a third color layer between the first barrier rib and the second barrier rib that emits white light when light emitted from the third color layer is combined with light emitted from first color conversion material and light emitted from the second color conversion material; and a second electrode on the first barrier rib, the second barrier rib, and the third color layer.
Abstract:
In an aspect, an organic light-emitting display apparatus including: a substrate; at least one color filter formed on the substrate; an overcoat layer covering the at least one color filter; a first passivation layer formed on the overcoat layer; a light scattering layer formed on the first passivation layer; a first electrode formed on the light scattering layer; a second electrode facing the first electrode; and an organic layer located between the first and second electrodes is provided.
Abstract:
A thin film transistor array panel according to an exemplary embodiment includes: a substrate; a thin film transistor positioned on the substrate; a first electrode connected to the thin film transistor; and a diffractive layer positioned between the substrate and the thin film transistor. The diffractive layer is positioned within a boundary line of semiconductors of the thin film transistor.
Abstract:
An organic light emitting diode device includes a first electrode and a second electrode facing each other, a charge-generating layer interposed between the first electrode and the second electrode, a first light emitting unit that emits blue and is interposed between the first electrode and the charge-generating layer, and a second light emitting unit that emits white by combining the blue and is interposed between the second electrode and the charge-generating layer. The first light emitting unit includes a blue emission layer, a first charge transport layer disposed on one side of the blue emission layer and including an alkali metal complex compound and a first charge transport material, and a second charge transport layer disposed on one side of the first charge transport layer and including the alkali metal complex compound and a second charge transport material that has different charge mobility from the first charge transport material.
Abstract:
A thin film transistor array panel according to an exemplary embodiment includes: a substrate; a thin film transistor positioned on the substrate; a first electrode connected to the thin film transistor; and a diffractive layer positioned between the substrate and the thin film transistor. The diffractive layer is positioned within a boundary line of semiconductors of the thin film transistor.
Abstract:
An organic light-emitting device having a resonance structure includes a substrate; a first electrode and a second electrode on the substrate and facing each other; an emission layer between the first electrode and the second electrode; a first hole transport layer between the first electrode and the emission layer; and a second hole transport layer between the first hole transport layer and the emission layer. An electron mobility of the second hole transport layer is 5 times to 100 times greater than an electron mobility of the first hole transport layer, and a thickness of the second hole transport layer corresponds to a resonance distance of a wavelength of emission light of the emission layer.