Abstract:
Provided is an organic light-emitting device including a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer. The emission layer includes a first compound represented by Formula 1-1 or Formula 1-2 below, a second compound represented by Formula 2 below, and a third compound represented by Formula 3 below: where Ar1 to Ar8, R1 to R3, A, L1, L2, a1, a2, b1, b2, c1, c2, l1, and l2 are as defined in the specification.
Abstract:
An organic light-emitting device and a method of manufacturing the same, including a substrate; a plurality of first electrodes on the substrate in a first to third light-emitting region; a first common layer on the substrate, the first common layer covering the plurality of first electrodes; a first light-emitting layer in the first light-emitting region and on the first common layer; a second light-emitting layer in the second light-emitting region and on the first common layer; a third light-emitting layer in the third light-emitting region and on the first common layer; a second common layer that is commonly disposed on the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer; a second electrode on the second common layer; and an auxiliary layer that is commonly disposed only in the first light-emitting region and the second light-emitting region between the first common layer and the second common layer.
Abstract:
An organic light emitting display device includes a substrate; a thin film transistor disposed on the substrate; and an organic light emitting component disposed on the substrate and electrically connected to the thin film transistor. The organic light emitting component includes: a first electrode; a second electrode; and an intermediate layer disposed between the first electrode and the second electrode. The organic light emitting display device further includes: a temperature sensing unit disposed on the substrate, the temperature sensing unit being configured to operate differently based on an ambient temperature of the organic light emitting display device; a power driver configured to provide power to the temperature sensing unit; and a voltage control unit configured to: determine a driving voltage of the temperature sensing unit based on the power provided to the temperature sensing unit; and determine the ambient temperature based on the driving voltage.
Abstract:
A display device includes a substrate and a pixel formed over the substrate. The pixel includes a red subpixel, a green subpixel, a deep green subpixel, and a blue subpixel. The configuration of the display device increases the luminous efficiency and life-span and realizes the high color purity.
Abstract:
Provided is an organic light-emitting display apparatus including a substrate; a first pixel electrode for first color emission, a second pixel electrode for second color emission, and a third pixel electrode for third color emission, the first pixel electrode, the second pixel electrode, and the third pixel electrode being spaced apart from each other on the substrate; a first color emission layer on the first pixel electrode, a second color emission layer on the second pixel electrode, and a third color emission layer on the third pixel electrode; an opposite electrode on the first color emission layer, the second color emission layer, and the third color emission layer; and a capping layer that includes a same material as the opposite electrode and is porous.