Abstract:
An organic light emitting device having an anode, a cathode and an organic layer disposed between the anode and the cathode is provided. In one aspect, the organic layer comprises a compound having at least one zwitterionic carbon donor ligand. In another aspect, the organic layer comprises a carbene compound, including the following: In another aspect, the organic layer comprises a carbene compound, including: In another aspect, the organic layer comprises a carbene compound that includes a triazole ring and has the structure: In another aspect, the organic layer comprises a carbene compound that includes a tetrazole ring and has the structure:
Abstract:
An alloyed halide double perovskite material, an alloyed halide double perovskite solar-cell absorber and solar cells constructed with such absorbers, the alloyed halide double perovskite material having the formula A2B1-aB′1-bDxX6, where A is an inorganic cation, an organic cation, a mixture of inorganic cations, a mixture of organic cations, or a mixture of one or more inorganic cations and one or more organic cations, where B is a metal, a mixture of metals, a metalloid, a mixture of metalloids, any mixture thereof, or is a vacancy, where B′ is a metal, a mixture of metals, a metalloid, a mixture of metalloids, any mixture thereof, or is a vacancy, where D is a dopant, and where X is a halide, a pseudohalide, a mixture of halides, a mixture of pseudohalides, or a mixture of halides and pseudohalides, and where x=a+b.
Abstract:
To provide a light-emitting element which uses a fluorescent material as a light-emitting substance and has higher luminous efficiency. To provide a light-emitting element which includes a mixture of a thermally activated delayed fluorescent substance and a fluorescent material. By making the emission spectrum of the thermally activated delayed fluorescent substance overlap with an absorption band on the longest wavelength side in absorption by the fluorescent material in an S1 level of the fluorescent material, energy at an S1 level of the thermally activated delayed fluorescent substance can be transferred to the S1 of the fluorescent material. Alternatively, it is also possible that the Si of the thermally activated delayed fluorescent substance is generated from part of the energy of a T1 level of the thermally activated delayed fluorescent substance, and is transferred to the S1 of the fluorescent material.
Abstract:
An optical material of the present invention has a minimum transmittance value in a wavelength range of 445 nm to 470 nm of a transmittance curve measured at a thickness of 2 mm of the optical material.
Abstract:
An organic light-emitting device includes a first electrode; a second electrode; an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, and an electron transport region between the emission layer and the second electrode. The emission layer includes a first compound represented by Formula 1 and a second compound represented by any one of Formulae 2-1 to 2-5. The electron transport region includes a third compound represented by Formula 7. The organic light-emitting device may have low driving voltage, high efficiency, and a long lifespan.
Abstract:
A triplet light emitting device which has high efficiency and improved stability and which can be fabricated by a simpler process is provided by simplifying the device structure and avoiding use of an unstable material. In a multilayer device structure using no hole blocking layer conventionally used in a triplet light emitting device, that is, a device structure in which on a substrate, there are formed an anode, a hole transporting layer constituted by a hole transporting material, an electron transporting and light emitting layer constituted by an electron transporting material and a dopant capable of triplet light emission, and a cathode, which are laminated in the stated order, the combination of the hole transporting material and the electron transporting material and the combination of the electron transporting material and the dopant material are optimized.
Abstract:
The present invention discloses a compound is represented by the following formula (I) or formula (II), the organic EL device employing the compound as phosphorescent host material, hole blocking material, hole blocking electron transport material, can display good performance. The same definition as described in the present invention.
Abstract:
A flexible display device includes a wire embedded layer that has flexibility and has a first principal surface, a thick wire embedded in the wire embedded layer so as to be substantially flush with the first principal surface of the wire embedded layer, an extraction lower electrode electrically connected to the thick wire and disposed on the first principal surface of the wire embedded layer, an emitting layer disposed on the extraction lower electrode, and an upper electrode disposed on the emitting layer. The flexible display device is suitable for large-screen devices and offers high productivity.
Abstract:
A semiconductor device containing a novel cyclosiloxane polymer showing electroconductivity or semiconductivity has a charge transport layer comprising a plasma polymer containing structural units (A) each having a transition metal as a central metal and structural units (B) each situated between structural units (A) adjacent to each other and having a cyclosiloxane skeleton. The charge transport layer is formed by plasma polymerization of an organic metal compound having the transition metal as the central metal and the cyclosiloxane compound in a reactor.
Abstract:
An organic electroluminescence display includes a first electrode and an auxiliary wire each either on or in a substrate. A luminescent layer is over the first electrode, and a hole transport layer is between the luminescent layer and the first electrode. The hole transport layer extends from over the first electrode to over the auxiliary wire. A second electrode is over the luminescent layer and extends from over the first electrode to over the auxiliary wire. A metal layer is over the auxiliary wire between the hole transport layer and the second electrode. The second electrode and the auxiliary wire are electrically connected via the hole transport layer and the metal layer. The metal layer comprises a metal, wherein a difference of a work function value of the metal minus an absolute value of an energy level of a lowest unoccupied molecular orbit of the hole transport layer is at most approximately 0.5 eV.