Abstract:
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a user equipment (UE) for receiving data is provided. The method includes receiving, from a base station, information on radio resources allocated to the UE, and receiving, from the base station, data based on the information on the radio resources. The radio resources are associated with a plurality of symbols in a time domain and a plurality of resource block groups in a frequency domain. The information on the radio resources includes at least one of first information on a starting symbol, or second information on a size of each of the resource block groups.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A wireless device for receiving signals, a base station for transmitting a master information block (MIB) in a wireless communication network and a method therefore are provided. The wireless device comprises a receiver configured to receive, from a base station, a master information block (MIB) for a first communication using a first frequency bandwidth, and a processor configured to identify a frequency offset between a center frequency of the first frequency bandwidth and a channel raster for a second communication using a second frequency bandwidth based on information in the MIB. The receiver is further configured to receive, from the base station, signals, through the first communication, based on the frequency offset. The first frequency bandwidth is narrower than the second frequency bandwidth.
Abstract:
A method for performing synchronization by a device in a device to device (D2D) communication system is provided. The method includes transmitting a first synchronization signal, and transmitting offset information indicating a time difference between a synchronization reference time of the first synchronization signal and a transmission time of the first synchronization signal.
Abstract:
A method and an apparatus for providing a service to a Mobile Station (MS) by a plurality of Base Stations (BSs) operating in cooperation in a wireless communication system are provided. The method includes configuring, by a master BS, a first cooperative cell including at least one slave BS, sending a resource request message for requesting resource allocation to the at least one slave BS included in the first cooperative cell, receiving, from each of the at least one slave BS, a resource request response message including resource approval control results for the resource allocation request, changing member BSs constituting the first cooperative cell based on the resource request response message, and allocating resources to an MS that is served in the first cooperative cell.
Abstract:
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a user equipment (UE) for receiving data is provided. The method includes receiving, from a base station, information on radio resources allocated to the UE, and receiving, from the base station, data based on the information on the radio resources. The radio resources are associated with a plurality of symbols in a time domain and a plurality of resource block groups in a frequency domain. The information on the radio resources includes at least one of first information on a starting symbol, or second information on a size of each of the resource block groups.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments, an apparatus of a user equipment (UE) in a wireless environment comprises at least one transceiver; and at least one processor operably coupled to the at least one transceiver. The at least one transceiver is configured to receive a reference signal configuration comprising information for indicating whether a reference signal of a transmission and reception point (TRP) is transmitted through beam sweeping from the TRP, and receive the reference signal from the TRP based on the received reference signal configuration.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a base station (BS) for transmitting a master information block (MIB) in a wireless communication network is provided. The method includes identifying first resources reserved for transmission of a first reference signal (RS) for a first communication using a first frequency bandwidth, identifying second resources reserved for transmission of a second RS for a second communication using a second frequency bandwidth, wherein the second frequency bandwidth is narrower than the first frequency bandwidth, determining third resources for a broadcast channel of the second communication based on the first resources and the second resources, and transmitting the MIB using the third resources via the broadcast channel.
Abstract:
A method for transmitting a reference signal by a base station in a wireless communication system is provided. The method includes transmitting configuration information for a reference signal to a terminal, performing a scrambling operation which multiplies the reference signal by a sequence on the basis of a beam group identifier for each of at least two beam groups set on a single cell, and transmitting the reference signal, to which the scrambling operation has been performed on the basis of the configuration information, to the terminal.
Abstract:
A method and apparatus are provided for transmitting a random access preamble in a wireless communication system. The method includes estimating path loss based on a downlink signal received from a base station; selecting a random access region based on the estimated path loss; determining a transmission power, based on a false alarm probability of the selected random access region; and transmitting the random access preamble to the base station, based on the determined transmission power.
Abstract:
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a user equipment (UE) for receiving data is provided. The method includes receiving, from a base station, information on radio resources allocated to the UE, and receiving, from the base station, data based on the information on the radio resources. The radio resources are associated with a plurality of symbols in a time domain and a plurality of resource block groups in a frequency domain. The information on the radio resources includes at least one of first information on a starting symbol, or second information on a size of each of the resource block groups.