Abstract:
Disclosed is a method for producing metadata, comprising: acquiring a first image and a second image which have different gamuts; acquiring at least one of white point information and gamut information with respect to the second image; correcting the first image on the basis of the acquired information; and producing metadata on the basis of the correspondence relationship of color information between the corrected first image and the second image.
Abstract:
Provided is a magnetic resonance imaging (MRI) apparatus. The MRI apparatus includes: a data acquisition unit configured to acquire a first k-space including a first missing line by undersampling an MR signal received from an object at a first time point, acquire a second k-space including a first acquired line corresponding to the first missing line by undersampling an MR signal received from the object at a second time point, and acquire a third k-space including a second acquired line corresponding to the first missing line by undersampling an MR signal received from the object at a third time point; and an image processor configured to interpolate data in the first missing line based on data in the first and second acquired lines.
Abstract:
Provided are a display device and method of changing a display setting. According to an aspect of an exemplary embodiment, the method of changing a display setting in a display device includes operations of: storing a plurality of display settings corresponding to a plurality of game categories; determining a display setting to be used for displaying video data of a currently running game among the plurality of display settings; and changing an actual display setting of the display device according to a determined display setting.
Abstract:
An optical transmitter includes photonic integrated circuits configured to respectively output optical transmission signals in different wavelength ranges. A photonic integrated circuit may include emitters configured to emit beams having different wavelengths; drivers configured to respectively provide power to the emitters, and a wavelength division multiplexer configured to transmit the beams emitted by the emitters. A photonic integrated circuit may include a switch device that controls the drivers, and light detectors configured to detect intensities of the beams emitted from the emitters. The switch device may selectively operate at least one driver of the plurality of drivers based on information associated with intensities of the beams. The switch device may selectively operate a driver connected to an emitter, based on a determination that an intensity of a beam emitted by another emitter is less than a threshold intensity value.
Abstract:
An ultrasonic transducer, an ultrasonic probe, and an image diagnosis apparatus perform an ultrasonic procedure. The ultrasonic transducer includes: a piezoelectric layer; an acoustic matching layer disposed on an upper surface of the piezoelectric layer; and a plurality of back efficiency layers that are disposed on a lower surface of the piezoelectric layer and have different acoustic impedances. The sensitivity, bandwidth, and pulse length of the ultrasonic transducer may be controlled by appropriately changing acoustic impedances and thicknesses of the back efficiency layers.
Abstract:
A display device includes a liquid crystal module to display an image at a front surface thereof, a cover to encase at least a portion of the liquid crystal module, and at least one fastening unit to couple the cover to the liquid crystal module, wherein the fastening unit is provided at a rear surface of the liquid crystal module.
Abstract:
Provided is a magnetic resonance imaging (MRI) apparatus. The MRI apparatus includes: a storage configured to store a plurality of MR signal data sets generated by applying a plurality of values of a first MR parameter and a plurality of values of a second MR parameter to an MR signal data generation model; a data acquisition unit configured to acquire an MR signal data set for a specific position of an object by undersampling an MR signal, based on the values of the first MR parameter; and an image processor configured to extract an MR signal data set that matches the MR signal data set acquired by undersampling the MR signal (hereinafter referred to as the ‘undersampled MR signal data set’) from among the stored MR signal data sets, obtain a value of the second MR parameter for the undersampled MR signal data set based on the extracted MR signal data set, and interpolate unsampled MR signal data in the undersampled MR signal data set (hereinafter, referred to as the ‘interpolated MR signal data set’) by using the value of the second MR parameter.
Abstract:
Disclosed are a display apparatus and a control method thereof, the display apparatus including: a display which displays an image; a touch panel which includes a plurality of pulse transmitting lines distributed with regard to a touch area of the touch panel, where voltage pulses are transmitted to the plurality of pulse transmitting lines, and a plurality of receiving lines distributed with regard to the touch area configured to detect a user's touch input on the touch area based on the voltage pulses transmitted to the pulse transmitting lines; and a controller configured to control a number of the voltage pulses to the plurality of pulse transmitting lines, where the number of the voltage pulses transmitted to the plurality of pulse transmitting lines corresponding to a touch expectation area of the touch area is greater than those voltage pulses transmitted to other areas of the touch area.
Abstract:
A method obtains a magnetic resonance (MR) spectrum of a voxel in a magnetic resonance (MR) image obtained from a magnetic resonance imaging (MRI) apparatus. The method includes configuring a sampling pattern of k-space data; sampling predetermined data from the k-space data based on the configured sampling pattern; and obtaining the MR spectrum of the voxel by using the sampled data.
Abstract:
A method for implementing a multi-vision system by using a plurality of portable terminals, wherein, if a user applies a touch input to each of the plurality of portable terminals in a state in which the plurality of portable terminals are disposed, each of the plurality of portable terminals transmits information relating to the touch input to a multi-vision controller, and the multi-vision controller determines how the plurality of portable terminals have been disposed by using the touch input information and then transmits picture division information indicating a respective content portion to be displayed by each portable terminal to the plurality of portable terminals, and thus, the user can conveniently and quickly implement the multi-vision system by using the plurality of portable terminals and can select an optimized disposition of the plurality of portable terminals based on the characteristics of the content.