摘要:
The present invention relates to a radiation curable coating composition comprising a radiation curable oligomer comprising a backbone derived from polypropylene glycol and a dimer acid based polyester polyol, wherein said coating composition, when cured, is having: a) a hardening temperature (Th) of from −10° C. to about −20° C. and a modulus measured at said Th of lower than 5.0 MPa; or b) a hardening temperature (Th) of from −20° C. to about −30° C. and a modulus measured at said Th of lower than 20.0 MPa; or c) a hardening temperature (Th) of lower than about −30° C. and a modulus measured at said Th of lower than 70.0 MPa.
摘要:
An optical fiber having an internal glass portion, a first coating layer surrounding the glass portion and a second coating layer surrounding the first coating layer. The first coating layer is formed from a cured polymeric material obtained by curing a radiation curable composition having a radiation curable oligomer having a backbone derived from polypropylene glycol and a dimer acid based polyester polyol. The cured polymeric material has: (a) a hardening temperature (Th) from −10° C. to about −20° C. and a modulus measured at the Th lower than 5.0 MPa; or (b) a hardening temperature (Th) from −20° C. to about −30° C. and a modulus measured at the Th lower than 20.0 MPa; or (c) a hardening temperature (Th) lower than about −30° C. and a modulus measured at the Th lower than 70.0 MPa.
摘要:
A process for preparing a disinfecting wound dressing for the protection of wounds, such as burn wounds, ulcers and cuts, the process comprising the steps of providing a yarn-based substrate, subjecting a surface of the substrate to a plasma environment, thereby providing non-leaching and biocidal features to the substrate surface by exposing the substrate surface to an antimicrobial active compound reaction.
摘要:
The invention relates to a process for preparing a disinfecting wound dressing for the protection of wounds, such as burn wounds, ulcers and cuts. The process comprises the steps of providing a yarn-based substrate, subjecting a surface of the substrate to a plasma environment, thereby providing non-leaching and biocidal features to the substrate surface by exposing the substrate surface to an antimicrobial active compound reaction.