摘要:
Communication among agile objects and context-bound objects within object-oriented programming environments, including communication across contextual boundaries, is disclosed. In one embodiment, a reference to a second object within a second context is wrapped in a proxy wrapper. A first object within a first context calls the second object via the wrapped reference. No direct reference is held by the first object to the second object. Other embodiments relate to agile objects. Agile objects called by context-bound objects execute in the contexts of their callers. The context of a calling context-bound object becomes the context of an agile object for calling of the agile object by the calling context-bound object. Direct reference to the agile object by the context-bound object is thus permitted.
摘要:
An object system provides composable object execution environment extensions with an object model that defines a framework with contexts, policies, policy makers and activators that act as object creation-time, reference creation-time and call-time event sinks to provide processing of effects specific to the environment extensions. At object creation time, an object instantiation service of the object system delegates to the activators to establish a context in which the object is created. The context contains context properties that represent particular of the composable environment extensions in which the object is to execute. The context properties also can act as policy makers that contribute policies to an optimized policy set for references that cross context boundaries. The policies in such optimized sets are issued policy events on calls across the context boundary to process effects of switching between the environment extensions of the two contexts.
摘要:
An object-based security framework provides for intra-process security boundaries. An application developer can define security settings declaratively at the object, interface, and method level using a graphical interface. When the application is deployed, the settings are placed into a central store and can be modified at a later time. At runtime, logic outside the application objects enforces the security boundaries, relieving the developer of having to incorporate security logic into the application. Changes to the security can be implemented by changing the settings without having to change the application objects. In addition to checking for identity, the security framework supports roles and enforces specified authentication levels. The integrity of an application's security scheme is retained when the application is combined with another application in the framework.
摘要:
An object-based security framework provides for intra-process security boundaries. An application developer can define security settings declaratively at the object, interface, and method level using a graphical interface. When the application is deployed, the settings are placed into a central store and can be modified at a later time. At runtime, logic outside the application objects enforces the security boundaries, relieving the developer of having to incorporate security logic into the application. Changes to the security can be implemented by changing the settings without having to change the application objects. In addition to checking for identity, the security framework supports roles and enforces specified authentication levels. The integrity of an application's security scheme is retained when the application is combined with another application in the framework.
摘要:
Herein is described an implementation of an object persister, which serializes an object to preserve the object's data structure and its current data. The serialized object is encoded using XML and inserted within a message. That message is transmitted to an entity over a network. Such a transmission is performed using standard Internet protocols, such as HTML. Upon receiving the serialized object, the receiving entity deserializes the object to use it. Rather than include copies of referenced objects within the serialized object, the object persister includes references to those objects. This avoids redundant inclusion of the same object and potentially infinite inclusion of the object itself that is being serialized.
摘要:
The object persister serializes an object to preserve the object's data structure and its current data. The serialized object is encoded using XML and inserted within a message. That message is transmitted to an entity over a network. Such a transmission is performed using standard Internet protocols, such as HTML. Upon receiving the serialized object, the receiving entity deserializes the object to use it. Rather than include copies of referenced objects within the serialized object, the object persister includes references to those objects. This avoids redundant inclusion of the same object and potentially infinite inclusion of the object itself that is being serialized.
摘要:
Using a message exchanger (“message exchanger”), data messages are exchanged between entities in a decentralized, distributed, potentially heterogeneous, network environment. The message exchanger employs XML (extensible Markup Language). To accomplish this, the entities on both ends of the message exchange understand, identify, and parse the message format. The message exchanger defines such a mechanism. Data messages are broken down into two portions—one portion (the body) is intended from an ultimate destination and the other portion (the header) is intended for intermediate destination and/or the ultimate destination. The body may be defined so that it must be understood by the ultimate destination. The header may be defined so that it must be understood or changed. Regardless, the data in the body is delivered intact to the ultimate destination. The message exchanger defines a message envelope exchange format in XML over a transport protocol, such as HTTP (HyperText Transport Protocol). This format allows for the execution of RPC (Remote Procedure Call) over XML, but it can be used for any message exchange over a network.
摘要:
Using a message exchanger (“message exchanger”), data messages are exchanged between entities in a decentralized, distributed, potentially heterogeneous, network environment. The message exchanger employs XML (extensible Markup Language). To accomplish this, the entities on both ends of the message exchange understand, identify, and parse the message format. The message exchanger defines such a mechanism. Data messages are broken down into two portions—one portion (the body) is intended from an ultimate destination and the other portion (the header) is intended for intermediate destination and/or the ultimate destination. The body may be defined so that it must be understood by the ultimate destination. The header may be defined so that it must be understood or changed. Regardless, the data in the body is delivered intact to the ultimate destination. The message exchanger defines a message envelope exchange format in XML over a transport protocol, such as HTTP (HyperText Transport Protocol). This format allows for the execution of RPC (Remote Procedure Call) over XML, but it can be used for any message exchange over a network.
摘要:
Here is described an implementation of an object persister, which serializes an object to preserve the object's data structure and its current data. The serialized object is encoded using XML and inserted within a message. That message is transmitted to an entity over a network. Such a transmission is performed using standard Internet protocols, such as HTML. Upon receiving the serialed object, the receiving entity deserializes the object to use it. Rather than include copies of referenced objects within the serialized object, the object persister includes references to those objects. This avoids redundant inclusion of the same object and potentially infinite inclusion of the object itself that is being serialized.
摘要:
A routing protocol is provided for exchanging messages between an initial sender and an ultimate receiver, potentially via a set of intermediaries. The routing protocol provides an optional reverse message path that enables two-way message exchange patterns. The routing protocol can be expressed as a header entry within a message envelope, is independent of the underlying protocol, and can be generated at the application layer of a protocol stack. The routing protocol may allow each intermediary to process the message and dynamically alter the message path en route to the intended recipient.