摘要:
A routing protocol is provided for exchanging messages between an initial sender and an ultimate receiver, potentially via a set of intermediaries. The routing protocol provides an optional reverse message path that enables two-way message exchange patterns. The routing protocol can be expressed as a header entry within a message envelope, is independent of the underlying protocol, and can be generated at the application layer of a protocol stack. The routing protocol may allow each intermediary to process the message and dynamically alter the message path en route to the intended recipient.
摘要:
Using a message exchanger (“message exchanger”), data messages are exchanged between entities in a decentralized, distributed, potentially heterogeneous, network environment. The message exchanger employs XML (extensible Markup Language). To accomplish this, the entities on both ends of the message exchange understand, identify, and parse the message format. The message exchanger defines such a mechanism. Data messages are broken down into two portions—one portion (the body) is intended from an ultimate destination and the other portion (the header) is intended for intermediate destination and/or the ultimate destination. The body may be defined so that it must be understood by the ultimate destination. The header may be defined so that it must be understood or changed. Regardless, the data in the body is delivered intact to the ultimate destination. The message exchanger defines a message envelope exchange format in XML over a transport protocol, such as HTTP (HyperText Transport Protocol). This format allows for the execution of RPC (Remote Procedure Call) over XML, but it can be used for any message exchange over a network.
摘要:
Herein is described an implementation of an object persister, which serializes an object to preserve the object's data structure and its current data. The serialized object is encoded using XML and inserted within a message. That message is transmitted to an entity over a network. Such a transmission is performed using standard Internet protocols, such as HTML. Upon receiving the serialized object, the receiving entity deserializes the object to use it. Rather than include copies of referenced objects within the serialized object, the object persister includes references to those objects. This avoids redundant inclusion of the same object and potentially infinite inclusion of the object itself that is being serialized.
摘要:
The object persister serializes an object to preserve the object's data structure and its current data. The serialized object is encoded using XML and inserted within a message. That message is transmitted to an entity over a network. Such a transmission is performed using standard Internet protocols, such as HTML. Upon receiving the serialized object, the receiving entity deserializes the object to use it. Rather than include copies of referenced objects within the serialized object, the object persister includes references to those objects. This avoids redundant inclusion of the same object and potentially infinite inclusion of the object itself that is being serialized.
摘要:
Using a message exchanger (“message exchanger”), data messages are exchanged between entities in a decentralized, distributed, potentially heterogeneous, network environment. The message exchanger employs XML (extensible Markup Language). To accomplish this, the entities on both ends of the message exchange understand, identify, and parse the message format. The message exchanger defines such a mechanism. Data messages are broken down into two portions—one portion (the body) is intended from an ultimate destination and the other portion (the header) is intended for intermediate destination and/or the ultimate destination. The body may be defined so that it must be understood by the ultimate destination. The header may be defined so that it must be understood or changed. Regardless, the data in the body is delivered intact to the ultimate destination. The message exchanger defines a message envelope exchange format in XML over a transport protocol, such as HTTP (HyperText Transport Protocol). This format allows for the execution of RPC (Remote Procedure Call) over XML, but it can be used for any message exchange over a network.
摘要:
Here is described an implementation of an object persister, which serializes an object to preserve the object's data structure and its current data. The serialized object is encoded using XML and inserted within a message. That message is transmitted to an entity over a network. Such a transmission is performed using standard Internet protocols, such as HTML. Upon receiving the serialed object, the receiving entity deserializes the object to use it. Rather than include copies of referenced objects within the serialized object, the object persister includes references to those objects. This avoids redundant inclusion of the same object and potentially infinite inclusion of the object itself that is being serialized.
摘要:
Communication among agile objects and context-bound objects within object-oriented programming environments, including communication across contextual boundaries, is disclosed. In one embodiment, a reference to a second object within a second context is wrapped in a proxy wrapper. A first object within a first context calls the second object via the wrapped reference. No direct reference is held by the first object to the second object. Other embodiments relate to agile objects. Agile objects called by context-bound objects execute in the contexts of their callers. The context of a calling context-bound object becomes the context of an agile object for calling of the agile object by the calling context-bound object. Direct reference to the agile object by the context-bound object is thus permitted.
摘要:
An object system provides composable object execution environment extensions with an object model that defines a framework with contexts, policies, policy makers and activators that act as object creation-time, reference creation-time and call-time event sinks to provide processing of effects specific to the environment extensions. At object creation time, an object instantiation service of the object system delegates to the activators to establish a context in which the object is created. The context contains context properties that represent particular of the composable environment extensions in which the object is to execute. The context properties also can act as policy makers that contribute policies to an optimized policy set for references that cross context boundaries. The policies in such optimized sets are issued policy events on calls across the context boundary to process effects of switching between the environment extensions of the two contexts.
摘要:
Workflow management for maintaining consistency of persisted state across communicating components via batching of uncommitted work. A workflow component defines a workflow containing work items to be performed by service provider components. The workflow component assigns the work items to the service provider components, and the service provider components acknowledge the assigned work items. The workflow component appends the assigned work items to a work batch. The workflow component creates a transaction containing the batched work items. The workflow component commits to the workflow by requesting the service provider components to perform the work items. The workflow component checks the state of the execution of the work items and stores the state in a persistent storage.
摘要:
Designing and executing a workflow having flow-based and constraint-based regions. A user selects one or more activities to be part of a constraint-based region. Each constraint-based region has a constraint associated therewith. The workflow is executed by executing the flow-based region and the constraint-based region. The flow-based region executes sequentially. The constraint is evaluated, and the constraint-based region executes responsive to the evaluated constraint.