Abstract:
A laser-based computing system includes a two-dimensional photonic crystal surface emitting laser (PCSEL) array including a plurality of PCSEL emitters located in a first layer, each emitter oriented in a direction perpendicular to a plane formed by the first layer, where the plurality of PCSEL emitters form a preset pattern within the first layer, and a controller operatively connected to the plurality of PCSEL emitters, the controller configured to modulate phase and/or amplitude of a beam emitted by a PCSEL emitter of the plurality of PCSEL emitters.
Abstract:
The disclosed technology provides systems and methods for an enclosure system with optimized internal dynamically controllable airflow distribution. The systems include a computing system enclosure, and an electroactive film adhered to a surface of the computing system enclosure and configured to redirect airflow distribution in the computing system enclosure. In another implementation, a method monitoring airflow distribution within a computing system enclosure with a plurality of sensors, and controlling an orientation of a programmable microstructure in an electroactive film adhered to a surface of the computing system enclosure based on results of the monitoring operation. In yet another implementation, the disclosed technology includes bimetallic baffles configured for utilization in a computing system enclosure to redirect airflow distribution within the computing system enclosure.
Abstract:
The disclosed technology provides systems and methods for an enclosure system with optimized internal dynamically controllable airflow distribution. The systems include a computing system enclosure, and an electroactive film adhered to a surface of the computing system enclosure and configured to redirect airflow distribution in the computing system enclosure. In another implementation, a method monitoring airflow distribution within a computing system enclosure with a plurality of sensors, and controlling an orientation of a programmable microstructure in an electroactive film adhered to a surface of the computing system enclosure based on results of the monitoring operation. In yet another implementation, the disclosed technology includes bimetallic baffles configured for utilization in a computing system enclosure to redirect airflow distribution within the computing system enclosure.
Abstract:
The disclosed technology provides systems and methods for an enclosure system with optimized internal dynamically controllable airflow distribution. The systems include a computing system enclosure, comprising a plurality of baffles or airflow redirection modules, and a controller configured to control an orientation of one or more of the plurality of baffles or airflow redirection modules for redirection of airflow distribution within the computing system enclosure based on a determined computing system enclosure profile. In another implementation, a method includes monitoring airflow distribution within a computing system enclosure with a plurality of sensors, and controlling an orientation of one or more baffles or airflow redirection modules in the computing system based on results of the monitoring operation for redirection of airflow distribution.
Abstract:
An electro-optical connector assembly includes a first data connector for arrangement on a first device and a second data connector for arrangement on a second device, the first and second data connectors being for communicating data through free space between the first device and the second device and, a first power connector for arrangement on the first device and a second power connector for arrangement on the second device, the first and second power connectors being for providing wireless power transfer between the first device and the second device.
Abstract:
The disclosed technology provides systems and methods for an enclosure system with optimized internal dynamically controllable airflow distribution. The systems include a computing system enclosure, comprising a plurality of baffles or airflow redirection modules, and a controller configured to control an orientation of one or more of the plurality of baffles or airflow redirection modules for redirection of airflow distribution within the computing system enclosure based on a determined computing system enclosure profile. In another implementation, a method includes monitoring airflow distribution within a computing system enclosure with a plurality of sensors, and controlling an orientation of one or more baffles or airflow redirection modules in the computing system based on results of the monitoring operation for redirection of airflow distribution.
Abstract:
The disclosed technology provides a system comprising a data center rack including one or more enclosures, each of the enclosures including one or more devices, and a plurality of flexplane units configured to interconnect with each other so as to interconnect a plurality of nodes in a torus topology, the one or more of the plurality of nodes is connected to one or more of the devices.