Abstract:
A communication method is provided in a communication network, including a plurality of devices forming an ordered communication segment. At least one intermediate device of this segment is connected to at most two other devices called a previous device and a next device. The intermediate device receives data from the previous device and emits at least these data to the next device to propagate the data on the segment. A concentrator initializes transmission of a first frame of data through the segment to a terminal device ending the segment, which sends back a symbol initiating transmission of a second frame of data to the first concentrator through the segment. The method includes receiving a first symbol from the previous device, which triggers emitting a WAIT symbol to the previous device and emitting at least first symbol to the next device.
Abstract:
An acquisition device includes a pair of input terminals for connection to an analog seismic sensor generating a seismic signal. The device includes a detector for detecting a disconnection of the sensor, which includes a current source for injecting a low current in the sensor to generate an offset signal which depends on electrical resistance of the sensor and is added to the seismic signal. The offset signal encroaches on only a part of an operating range of the acquisition device. The voltage measured at the input terminals is applied to an analog-digital converter and a filter to obtain a measured value of the offset signal. A processing unit either analyzes a temporal variation of the measured value and triggers an alarm if a determined condition is satisfied, or transmits the measured value to a remote device adapted to analyse the temporal variation.
Abstract:
A digital seismic sensor adapted to be connected, via a two-conductor line, to an acquisition device. The digital seismic sensor includes: a digital sensor; a local sampling clock providing a sampling frequency; a receiver for receiving command data coming from the acquisition device and synchronization information providing accurate timing information to enable seismic sensor synchronization; a compensator for compensating, as a function of the synchronization information, a drift of the local sampling clock; a transmitter for transmitting seismic data towards the acquisition device; a driver for driving the receiver and the transmitter, according to a half-duplex transmission protocol over the two-conductor line and using a transmission clock extracted from the received command data; a power receiver for receiving electrical power; and a coupler for coupling the command and synchronization information receiver, the transmitter and the power receiver to the two-conductor line.
Abstract:
A communication method is provided in a communication network, including a plurality of devices forming an ordered communication segment. At least one intermediate device of this segment is connected to at most two other devices called a previous device and a next device. The intermediate device receives data from the previous device and emits at least these data to the next device to propagate the data on the segment. A concentrator initializes transmission of a first frame of data through the segment to a terminal device ending the segment, which sends back a symbol initiating transmission of a second frame of data to the first concentrator through the segment. The method includes receiving a first symbol from the previous device, which triggers emitting a WAIT symbol to the previous device and emitting at least first symbol to the next device.
Abstract:
A digital seismic sensor adapted to be connected, via a two-conductor line, to an acquisition device. The digital seismic sensor includes: a digital sensor; a local sampling clock providing a sampling frequency; a receiver for receiving command data coming from the acquisition device and synchronization information providing accurate timing information to enable seismic sensor synchronization; a compensator for compensating, as a function of the synchronization information, a drift of the local sampling clock; a transmitter for transmitting seismic data towards the acquisition device; a driver for driving the receiver and the transmitter, according to a half-duplex transmission protocol over the two-conductor line and using a transmission clock extracted from the received command data; a power receiver for receiving electrical power; and a coupler for coupling the command and synchronization information receiver, the transmitter and the power receiver to the two-conductor line.
Abstract:
A digital seismic sensor adapted to be connected, via a two-conductor line, to an acquisition device. The digital seismic sensor includes: a digital sensor; a local sampling clock providing a sampling frequency; a receiver for receiving command data coming from the acquisition device and synchronization information providing accurate timing information to enable seismic sensor synchronization; a compensator for compensating, as a function of the synchronization information, a drift of the local sampling clock; a transmitter for transmitting seismic data towards the acquisition device; a driver for driving the receiver and the transmitter, according to a half-duplex transmission protocol over the two-conductor line and using a transmission clock extracted from the received command data; a power receiver for receiving electrical power; and a coupler for coupling the command and synchronization information receiver, the transmitter and the power receiver to the two-conductor line.
Abstract:
An acquisition device includes a pair of input terminals for connection to an analog seismic sensor generating a seismic signal. The device includes a detector for detecting a disconnection of the sensor, which includes a current source for injecting a low current in the sensor to generate an offset signal which depends on electrical resistance of the sensor and is added to the seismic signal. The offset signal encroaches on only a part of an operating range of the acquisition device. The voltage measured at the input terminals is applied to an analog-digital converter and a filter to obtain a measured value of the offset signal. A processing unit either analyzes a temporal variation of the measured value and triggers an alarm if a determined condition is satisfied, or transmits the measured value to a remote device adapted to analyze the temporal variation.