Abstract:
A duplexer is provided, which includes a first, a second and a third signal ports; a first filter and a second filter. The first filter has first, second, and third resonant circuits that have first, second and third inductors, respectively. The first, second and third inductors are mutually inductive. The first and third resonant circuits are electrically connected to the first and second signal ports, respectively. The second filter has fourth, fifth and sixth resonant circuits that have fourth, fifth and sixth inductors, respectively. The fourth resonant circuit is connected in series with the first resonant circuit. The fifth inductor and the fourth inductor are mutually inductive. The sixth resonant circuit is electrically connected to the third signal port. The second filter further has a main capacitor connected in series with the fifth and sixth resonant circuits respectively and located therebetween.
Abstract:
A balanced-to-unbalanced converter (balun) is provided, including: a converting circuit having a first processing circuit including a first inductor and a first capacitor connected in series, a second processing circuit including a second capacitor and a second inductor connected in series, the second capacitor being electrically connected to the first inductor, and two balanced output ends connected to the first processing circuit and the second processing circuit, respectively; and a preprocessing circuit connected to the converting circuit and including an unbalanced input end for converting real impedance at the unbalanced input end into complex impedance at the balanced output ends. Accordingly, the balun satisfies the need of the wireless communication chips by providing differential signals with complex impedance. This is done by employing the preprocessing circuit in conjunction with the converting circuit to convert an unbalanced signal with real impedance into a balanced signal with complex impedance.
Abstract:
A duplexer is provided, which includes a first, a second and a third signal ports; a first filter and a second filter. The first filter has first, second, and third resonant circuits that have first, second and third inductors, respectively. The first, second and third inductors are mutually inductive. The first and third resonant circuits are electrically connected to the first and second signal ports, respectively. The second filter has fourth, fifth and sixth resonant circuits that have fourth, fifth and sixth inductors, respectively. The fourth resonant circuit is connected in series with the first resonant circuit. The fifth inductor and the fourth inductor are mutually inductive. The sixth resonant circuit is electrically connected to the third signal port. The second filter further has a main capacitor connected in series with the fifth and sixth resonant circuits respectively and located therebetween.
Abstract:
A balanced-to-unbalanced converter (balun) is provided, including: a converting circuit having a first processing circuit including a first inductor and a first capacitor connected in series, a second processing circuit including a second capacitor and a second inductor connected in series, the second capacitor being electrically connected to the first inductor, and two balanced output ends connected to the first processing circuit and the second processing circuit, respectively; and a preprocessing circuit connected to the converting circuit and including an unbalanced input end for converting real impedance at the unbalanced input end into complex impedance at the balanced output ends. Accordingly, the balun satisfies the need of the wireless communication chips by providing differential signals with complex impedance. This is done by employing the preprocessing circuit in conjunction with the converting circuit to convert an unbalanced signal with real impedance into a balanced signal with complex impedance.