Systems and methods for implementing efficient cross-fading between compressed audio streams

    公开(公告)号:US09779736B2

    公开(公告)日:2017-10-03

    申请号:US14395183

    申请日:2013-04-17

    CPC classification number: G10L19/00 G11B27/031 G11B27/038 H04H20/38 H04H60/04

    Abstract: Systems and methods are presented for efficient cross-fading (or other multiple clip processing) of compressed domain information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Exemplary implementation systems may provide cross-fade between AAC/Enhanced AAC Plus (EAACPIus) information streams or between MP3 information streams or even between information streams of unmatched formats (e.g. AAC to MP3 or MP3 to AAC). Furthermore, these systems are distinguished by the fact that cross-fade is directly applied to the compressed bitstreams so that a single decode operation may be performed on the resulting bitstream. Moreover, using the described methods, similar cross fade in the compressed domain between information streams utilizing other formats of compression, such as, for example, MP2, AC-3, PAC, etc. can also be advantageously implemented. Thus, in exemplary embodiments of the present invention a set of frames from each input stream associated with the time interval in which a cross fade is decoded, and combined and recoded with a cross fade or other effect now in the compressed bitstream. Once sent through the client device's decoder, the user hears the transitional effect. The only input data that is decoded and processed is that associated with the portion of each stream used in the crossfade, blend or other interstitial, and thus the vast majority of the input streams are left compressed.

    SYSTEMS AND METHODS FOR IMPLEMENTING EFFICIENT CROSS-FADING BETWEEN COMPRESSED AUDIO STREAMS

    公开(公告)号:US20180025735A1

    公开(公告)日:2018-01-25

    申请号:US15722240

    申请日:2017-10-02

    CPC classification number: G10L19/00 G11B27/031 G11B27/038 H04H20/38 H04H60/04

    Abstract: Systems and methods are presented for efficient cross-fading (or other multiple clip processing) of compressed domain information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Exemplary implementation systems may provide cross-fade between AAC/Enhanced AAC Plus (EAACPlus) information streams or between MP3 information streams or even between information streams of unmatched formats (e.g. AAC to MP3 or MP3 to AAC). Furthermore, these systems are distinguished by the fact that cross-fade is directly applied to the compressed bitstreams so that a single decode operation may be performed on the resulting bitstream. Moreover, using the described methods, similar cross fade in the compressed domain between information streams utilizing other formats of compression, such as, for example, MP2, AC-3, PAC, etc. can also be advantageously implemented. Thus, in exemplary embodiments of the present invention a set of frames from each input stream associated with the time interval in which a cross fade is decoded, and combined and recoded with a cross fade or other effect now in the compressed bitstream. Once sent through the client device's decoder, the user hears the transitional effect. The only input data that is decoded and processed is that associated with the portion of each stream used in the crossfade, blend or other interstitial, and thus the vast majority of the input streams are left compressed.

    System and method for increasing transmission bandwidth efficiency (“EBT2”)

    公开(公告)号:US09767812B2

    公开(公告)日:2017-09-19

    申请号:US14226788

    申请日:2014-03-26

    Abstract: Systems and methods for increasing transmission bandwidth efficiency by the analysis and synthesis of the ultimate components of transmitted content are presented. To implement such a system, a dictionary or database of elemental codewords can be generated from a set of audio clips. Using such a database, a given arbitrary song or other audio file can be expressed as a series of such codewords, where each given codeword in the series is a compressed audio packet that can be used as is, or, for example, can be tagged to be modified to better match the corresponding portion of the original audio file. Each codeword in the database has an index number or unique identifier. For a relatively small number of bits used in a unique ID, e.g. 27-30, several hundreds of millions of codewords can be uniquely identified. By providing the database of codewords to receivers of a broadcast or content delivery system in advance, instead of broadcasting or streaming the actual compressed audio signal, all that need be transmitted is the series of identifiers along with any modification instructions to the identified codewords. After reception, intelligence on the receiver having access to a locally stored copy of the dictionary can reconstruct the original audio clip by accessing the codewords via the received IDs, modify them as instructed by the modification instructions, further modify the codewords either individually or in groups using the audio profile of the original audio file (also sent by the encoder) and play back a generated sequence of phase corrected codewords and modified codewords as instructed. In exemplary embodiments of the present invention, such modification can extend into neighboring codewords, and can utilize either or both (i) cross correlation based time alignment and (ii) phase continuity between harmonics, to achieve higher fidelity to the original audio clip.

    SYSTEMS AND METHODS FOR IMPLEMENTING EFFICIENT CROSS-FADING BETWEEN COMPRESSED AUDIO STREAMS

    公开(公告)号:US20220328051A1

    公开(公告)日:2022-10-13

    申请号:US17522595

    申请日:2021-11-09

    Abstract: Systems and methods are presented for efficient cross-fading of compressed domain information streams on a user/client device. Exemplary systems may provide cross-fade between AAC/Enhanced AAC Plus information streams, between MP3 information streams, or between information streams of unmatched formats. These systems are distinguished in that cross-fade is directly applied to compressed bitstreams so a single decode operation is performed on the resulting bitstream. Thus, a set of frames from each input stream associated with the time interval in which a cross fade is decoded, and combined and recoded with a cross fade or other effect now in the compressed bitstream. Once sent through the client device's decoder, the user hears the transitional effect. The only input data that is decoded and processed is that associated with the portion of each stream used the crossfade, blend or other interstitial, and thus the vast majority of input streams are left compressed.

    Systems and methods for implementing efficient cross-fading between compressed audio streams

    公开(公告)号:US11170791B2

    公开(公告)日:2021-11-09

    申请号:US16526296

    申请日:2019-07-30

    Abstract: Systems and methods are presented for efficient cross-fading (or other multiple clip processing) of compressed domain information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Exemplary implementation systems may provide cross-fade between AAC/Enhanced AAC Plus (EAACPlus) information streams or between MP3 information streams or even between information streams of unmatched formats (e.g. AAC to MP3 or MP3 to AAC). Furthermore, these systems are distinguished by the fact that cross-fade is directly applied to the compressed bitstreams so that a single decode operation may be performed on the resulting bitstream. Moreover, using the described methods, similar cross fade in the compressed domain between information streams utilizing other formats of compression, such as, for example, MP2, AC-3, PAC, etc. can also be advantageously implemented. Thus, in exemplary embodiments of the present invention a set of frames from each input stream associated with the time interval in which a cross fade is decoded, and combined and recoded with a cross fade or other effect now in the compressed bitstream. Once sent through the client device's decoder, the user hears the transitional effect. The only input data that is decoded and processed is that associated with the portion of each stream used in the crossfade, blend or other interstitial, and thus the vast majority of the input streams are left compressed.

    "> SYSTEM AND METHOD FOR INCREASING TRANSMISSION BANDWIDTH EFFICIENCY (

    公开(公告)号:US20180068665A1

    公开(公告)日:2018-03-08

    申请号:US15706079

    申请日:2017-09-15

    Abstract: Systems and methods for increasing transmission bandwidth efficiency by the analysis and synthesis of the ultimate components of transmitted content are presented. To implement such a system, a dictionary or database of elemental codewords can be generated from a set of audio clips. Using such a database, a given arbitrary song or other audio file can be expressed as a series of such codewords, where each given codeword in the series is a compressed audio packet that can be used as is, or, for example, can be tagged to be modified to better match the corresponding portion of the original audio file. Each codeword in the database has an index number or unique identifier. For a relatively small number of bits used in a unique ID, e.g. 27-30, several hundreds of millions of codewords can be uniquely identified. By providing the database of codewords to receivers of a broadcast or content delivery system in advance, instead of broadcasting or streaming the actual compressed audio signal, all that need be transmitted is the series of identifiers along with any modification instructions to the identified codewords. After reception, intelligence on the receiver having access to a locally stored copy of the dictionary can reconstruct the original audio clip by accessing the codewords via the received IDs, modify them as instructed by the modification instructions, further modify the codewords either individually or in groups using the audio profile of the original audio file (also sent by the encoder) and play back a generated sequence of phase corrected codewords and modified codewords as instructed. In exemplary embodiments of the present invention, such modification can extend into neighboring codewords, and can utilize either or both (i) cross correlation based time alignment and (ii) phase continuity between harmonics, to achieve higher fidelity to the original audio clip.

    Systems and methods for implementing efficient cross-fading between compressed audio streams

    公开(公告)号:US10366694B2

    公开(公告)日:2019-07-30

    申请号:US15722240

    申请日:2017-10-02

    Abstract: Systems and methods are presented for efficient cross-fading (or other multiple clip processing) of compressed domain information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Exemplary implementation systems may provide cross-fade between AAC/Enhanced AAC Plus (EAACPlus) information streams or between MP3 information streams or even between information streams of unmatched formats (e.g. AAC to MP3 or MP3 to AAC). Furthermore, these systems are distinguished by the fact that cross-fade is directly applied to the compressed bitstreams so that a single decode operation may be performed on the resulting bitstream. Moreover, using the described methods, similar cross fade in the compressed domain between information streams utilizing other formats of compression, such as, for example, MP2, AC-3, PAC, etc. can also be advantageously implemented. Thus, in exemplary embodiments of the present invention a set of frames from each input stream associated with the time interval in which a cross fade is decoded, and combined and recoded with a cross fade or other effect now in the compressed bitstream. Once sent through the client device's decoder, the user hears the transitional effect. The only input data that is decoded and processed is that associated with the portion of each stream used in the crossfade, blend or other interstitial, and thus the vast majority of the input streams are left compressed.

    System and method for increasing transmission bandwidth efficiency (“EBT2”)

    公开(公告)号:US10096326B2

    公开(公告)日:2018-10-09

    申请号:US15706079

    申请日:2017-09-15

    Abstract: Systems and methods for increasing transmission bandwidth efficiency by the analysis and synthesis of the ultimate components of transmitted content are presented. To implement such a system, a dictionary or database of elemental codewords can be generated from a set of audio clips. Using such a database, a given arbitrary song or other audio file can be expressed as a series of such codewords, where each given codeword in the series is a compressed audio packet that can be used as is, or, for example, can be tagged to be modified to better match the corresponding portion of the original audio file. Each codeword in the database has an index number or unique identifier. For a relatively small number of bits used in a unique ID, e.g. 27-30, several hundreds of millions of codewords can be uniquely identified. By providing the database of codewords to receivers of a broadcast or content delivery system in advance, instead of broadcasting or streaming the actual compressed audio signal, all that need be transmitted is the series of identifiers along with any modification instructions to the identified codewords. After reception, intelligence on the receiver having access to a locally stored copy of the dictionary can reconstruct the original audio clip by accessing the codewords via the received IDs, modify them as instructed by the modification instructions, further modify the codewords either individually or in groups using the audio profile of the original audio file (also sent by the encoder) and play back a generated sequence of phase corrected codewords and modified codewords as instructed. In exemplary embodiments of the present invention, such modification can extend into neighboring codewords, and can utilize either or both (i) cross correlation based time alignment and (ii) phase continuity between harmonics, to achieve higher fidelity to the original audio clip.

Patent Agency Ranking