Abstract:
An image storage section 48 stores shot image data with a plurality of resolutions transmitted from an imaging device. Depth images 152 with a plurality of resolutions are generated using stereo images with a plurality of resolution levels from the shot image data (S10). Next, template matching is performed using a reference template image 154 that represents a desired shape and size, thus extracting a candidate area for a target picture having the shape and size for each distance range associated with one of the resolutions (S12). A more detailed analysis is performed on the extracted candidate areas using the shot image stored in the image storage section 48 (S14). In some cases, a further image analysis is performed based on the analysis result using a shot image with a higher resolution level (S16a and S16b).
Abstract:
Data of a moving image has a hierarchical structure comprising a 0-th layer, a first layer, a second layer, and a third layer in a z axis direction. Each layer is composed of moving image data of a single moving image expressed in different resolutions. Both the coordinates of a viewpoint at the time of the display of a moving image and a corresponding display area are determined in a virtual three-dimensional space formed by an x axis representing the horizontal direction of the image, a y axis representing the vertical direction of the image, and a z axis representing the resolution. By providing a switching boundary for layers with respect to the z axis, the layers of the moving image data used for frame rendering are switched in accordance with the value of z of the frame coordinates.
Abstract:
An information processor includes: a similarity data generation portion generating similarity data that represents the calculated similarity to the image in the reference block in association with a position within the search range; a result evaluation portion detecting a position with a maximum similarity value for each piece of the similarity data and screening the detection result by making a given evaluation of the similarity; a depth image generation portion finding a parallax for each of the reference blocks using the detection result validated as a result of screening, calculating a position of a subject in a depth direction on a basis of the parallax, and generating a depth image by associating the position of the subject in the depth direction with an image plane; and an output information generation section performing given information processing on a basis of the subject position in a three-dimensional space using the depth image and outputting the result of information processing.
Abstract:
Methods and Apparatus provide for obtaining a data sequence representative of a three-dimensional parameter space; forming a plurality of coding units by dividing, in three dimensions, the data sequence subject; and generating, for each of the plurality of coding units: (i) a palette defined by two representative values, and (ii) a plurality of indices, each index representing a respective original data point as a value, determined by linear interpolation, to be one of, or an intermediate value between, the representative values, and setting the palette and the plurality of indices for each of the coding units as compressed data.
Abstract:
An information processor includes: a similarity data generation portion generating, for a position within the search range, similarity data that represents the calculated similarity to the image in the reference block in association with the position within the search range; a similarity correction portion smoothing the similarity data in a direction of space on a basis of similarity data; a result evaluation portion detecting a position with a maximum similarity value in each piece of the smoothed similarity data; a depth image generation portion generating a depth image by associating the position of the subject in the depth direction with an image plane; and an output information generation section performing given information processing on a basis of the subject position in a three-dimensional space using the depth image and outputting the result of information processing.
Abstract:
An information processing device includes: an information processing section configured to detect a figure of a target object from an image captured from a movie of the target object so as to perform information processing on the detected image; a main data generating section configured to generate data of a main image to be displayed as a result of the information processing; an auxiliary data generating section configured to generate data of an auxiliary image including the captured image; and an output data transmitting section configured to transmit to an output device the main image data and the auxiliary image data in relation to each other such that the main image and the auxiliary image are displayed together.
Abstract:
A viewpoint detection unit detects a user viewing a stereoscopic image, including a parallax image of a subject as viewed from a predetermined position defined as a reference view position, and tracks a viewpoint of the detected user. A motion parallax correction unit determines, if a speed of movement of the viewpoint becomes equal to or higher than a predetermined level, an amount of motion parallax correction for the parallax image, on the basis of an amount of movement of the viewpoint, so as to generate a stereoscopic image corrected for motion parallax, generates, if the speed of movement of the viewpoint subsequently becomes lower than a predetermined level, a stereoscopic image by changing the amount of motion parallax correction in steps until the parallax image return to parallax images as seen from the reference view position.