摘要:
A method for the automatic light control for a motor vehicle with a camera sensor for monitoring the environment in front of the motor vehicle is presented. With the camera sensor, an image sequence of the motor vehicle environment in front of the motor vehicle is recorded. The lane of the own motor vehicle is estimated from the image data. At least one evaluation window along the lane is set in the image, so that preceding and oncoming motor vehicles are recorded. Points of light in the image sequence are pursued (tracked). On the basis of the image data, the lights of other motor vehicles are detected, and the front headlights are controlled in such a manner that the drivers of other motor vehicles are not blinded.
摘要:
A method for detecting and categorising points of light for a motor vehicle with a camera sensor directed towards the motor vehicle environment is presented. Here, at least one first category for passive, illumined reflectors and at least one second category for self-radiating, moving lights, in particular motor vehicle lights, is provided. For this purpose, the time progression of the intensity of a point of light is analysed. On the basis of the intensity fluctuation, points of light are categorised as motor vehicle lights or as reflectors.
摘要:
A method for detecting and categorizing points of light for a motor vehicle with a camera sensor directed towards the motor vehicle environment is presented. Here, at least one first category for passive, illumined reflectors and at least one second category for self-radiating, moving lights, in particular motor vehicle lights, is provided. For this purpose, the time progression of the intensity of a point of light is analysed. On the basis of the intensity fluctuation, points of light are categorized as motor vehicle lights or as reflectors.
摘要:
A method for the automatic light control for a motor vehicle with a camera sensor for monitoring the environment in front of the motor vehicle is presented. With the camera sensor, an image sequence of the motor vehicle environment in front of the motor vehicle is recorded. The lane of the own motor vehicle is estimated from the image data. At least one evaluation window along the lane is set in the image, so that preceding and oncoming motor vehicles are recorded. Points of light in the image sequence are pursued (tracked). On the basis of the image data, the lights of other motor vehicles are detected, and the front headlights are controlled in such a manner that the drivers of other motor vehicles are not blinded.
摘要:
A method for determining at least one threshold value S for distinguishing, in the dark, between reflectors and vehicle lights that are recorded as light spots by a camera sensor oriented towards the surroundings of a vehicle. The camera sensor records a series of images of the surroundings of the vehicle. At least one light spot in the series of images is tracked. When the tracking of a light spot is completed, at least one parameter (for example the maximum intensity Imax of the light spot in the entire series of images, or the lifetime τ of the light spot) is determined from measured values, for example from the intensity of the light spot in each image. The threshold value S is then adapted to the determined parameter/s. The determined parameter value of the light spot is included in a frequency distribution of the parameter values from previously tracked light spots. A new threshold value for distinguishing between vehicle lights and reflectors is determined from the updated frequency distribution of the parameter values. After temporal filtering a new threshold value for distinguishing between reflectors and vehicle lights is fixed.
摘要:
Disclosed herein is a method for calibrating a camera-based system of a vehicle (F), having a pane (S), in particular of a camera-based driver assistance system. A type of the pane (S), in particular the tinting thereof, is detected by way of the camera-based system.
摘要:
Disclosed herein is a method for calibrating a camera-based system of a vehicle (F), having a pane (S), in particular of a camera-based driver assistance system. A type of the pane (S), in particular the tinting thereof, is detected by way of the camera-based system.
摘要:
A method for determining at least one threshold value S for distinguishing, in the dark, between reflectors and vehicle lights that are recorded as light spots by a camera sensor oriented towards the surroundings of a vehicle. The camera sensor records a series of images of the surroundings of the vehicle. At least one light spot in the series of images is tracked. When the tracking of a light spot is completed, at least one parameter (for example the maximum intensity Imax of the light spot in the entire series of images, or the lifetime τ of the light spot) is determined from measured values, for example from the intensity of the light spot in each image. The threshold value S is then adapted to the determined parameter/s. The determined parameter value of the light spot is included in a frequency distribution of the parameter values from previously tracked light spots. A new threshold value for distinguishing between vehicle lights and reflectors is determined from the updated frequency distribution of the parameter values. After temporal filtering a new threshold value for distinguishing between reflectors and vehicle lights is fixed.
摘要:
A method for detecting road lane markings for a motor vehicle in motion with an image recording unit is presented. The image recording unit points to the road in front of the vehicle and in the recorded image data, brightness differences (contrasts) are analysed and/or edges are extracted. Road lane markings are detected by means of their periodic arrangement. For evaluation purposes, the measuring signal of the image recording unit is transformed into another coordinate system, and the auxiliary function thus obtained is tested for periodic structures.
摘要:
A method for detecting misalignment of a vehicle headlight using a camera system is specified. For this purpose, the headlight is in a predefined position and the camera system is arranged on or in the vehicle and is oriented in such a manner that the light distribution pattern of the headlight in front of the motor vehicle is detected. With a predefined headlight position, an actual light distribution pattern of the headlight is recorded using the camera system and is compared with a desired light distribution pattern for the predefined headlight position. If the actual light distribution pattern differs from the desired light distribution pattern, misalignment of the headlight is detected.