Abstract:
A 3D printer includes an enclosed build chamber thermally separated from a tool chamber. An upward-facing tool tray coupled to or integral with a carriage has an open bottom providing a tool port for accessing the heated build chamber. A thermal barrier is mounted in the tool tray, covering the tool port but penetrable through an aperture thereof. The aperture provides an entry point to the build chamber for a working end of an active print head, wherein when the working end is positioned though the aperture, the tool port is substantially closed.
Abstract:
A platen assembly for use in a 3D printer includes a frame and a platen supported by the frame. The platen is configured to receive a removable build tray. A lever release mechanism of the platen assembly is coupled to the frame and is configured to both secure the build tray to the platen for printing of the part, and to eject the build tray from the platen after printing of the part.
Abstract:
A purge station assembly for use in an additive manufacturing system, which includes a purge station having a base bracket, a slide mount slidably engaged with the base bracket, and a contact head configured to clean a nozzle tip of a print head. The purge station assembly also includes a mechanism, such as a cable line, operably attached to the slide mount that allows an operator to mechanically move the slide mount relative to the base bracket from a location that is remote from the purge station.
Abstract:
A linear motor includes a rotor rotatable relative to a surrounding rotor sleeve and about a central axis. At least one opening extends between an inner surface and an outer surface of the rotor. An externally threaded leadscrew extends through the rotor and along the central axis. An internally threaded nut is located within and mated to the rotor so as to rotate with the rotor about the central axis and ride along the leadscrew. A first cavity is located between the nut and a first bushing set against the inner surface of the rotor and a second cavity is located between nut and a second bushing set against the inner surface of the rotor. The at least one opening in the rotor forms a passage between the first and second cavities and is defined between the sleeve and nut so as to communicate excess lubricant.
Abstract:
A liquefier assembly for use in an extrusion-based additive manufacturing system includes a liquefier tube compositionally comprising a metallic material, and having a first end and a second end offset along a longitudinal axis, and a flow channel extending from the first end to the second end. The assembly further includes an extrusion tip compositionally comprising a metallic material and coupled to the second end of the liquefier tube, the extrusion tip having a cavity having an interior shoulder wherein the cavity terminates in an opening. The liquefier includes a hardened insert compositionally comprising a material that is harder than the metallic material of the extrusion tip and the metallic material of the liquefier tube. The hardened insert has an exterior shoulder that engages the interior shoulder of the extrusion tip such that the insert is press fit within the extrusion tip. The tip insert has a channel that aligns with the flow channel wherein the channel terminates at an extrusion port configured to extrude material therefrom.
Abstract:
A platen assembly for use in a 3D printer includes a frame and a platen supported by the frame. The platen is configured to receive a removable build tray. A lever release mechanism of the platen assembly is coupled to the frame and is configured to both secure the build tray to the platen for printing of the part, and to eject the build tray from the platen after printing of the part.
Abstract:
A linear motor includes a rotor rotatable relative to a surrounding rotor sleeve and about a central axis. At least one opening extends between an inner surface and an outer surface of the rotor. An externally threaded leadscrew extends through the rotor and along the central axis. An internally threaded nut is located within and mated to the rotor so as to rotate with the rotor about the central axis and ride along the leadscrew. A first cavity is located between the nut and a first bushing set against the inner surface of the rotor and a second cavity is located between nut and a second bushing set against the inner surface of the rotor. The at least one opening in the rotor forms a passage between the first and second cavities and is defined between the sleeve and nut so as to communicate excess lubricant.
Abstract:
A purge station assembly for use in an additive manufacturing system, which includes a purge station having a base bracket, a slide mount slidably engaged with the base bracket, and a contact head configured to clean a nozzle tip of a print head. The purge station assembly also includes a mechanism, such as a cable line, operably attached to the slide mount that allows an operator to mechanically move the slide mount relative to the base bracket from a location that is remote from the purge station.