Abstract:
A dielectric filter includes a plurality of dielectric resonators. The dielectric filter also includes: a plurality of resonator body portions each formed of a first dielectric and respectively corresponding to the plurality of dielectric resonators, the first dielectric having a first relative permittivity; a peripheral dielectric portion formed of a second dielectric and lying around the plurality of resonator body portions, the second dielectric having a second relative permittivity lower than the first relative permittivity; and a shield portion formed of a conductor. Either one of a temperature coefficient of resonant frequency of the first dielectric at 25° C. to 85° C. and a temperature coefficient of resonant frequency of the second dielectric at 25° C. to 85° C. has a positive value and the other has a negative value.
Abstract:
An object is to provide a ferrite composition suitable for an antenna element with a long communication distance in a high-frequency band (for example, 13.56 MHz), a ferrite plate formed of the ferrite composition, a magnetic member for an antenna element formed of the ferrite plate, and an antenna element provided with a member for an antenna element. A ferrite composition, wherein: main components contain, with Fe2O3 conversion, 45.0-49.5 mol % of iron oxide, with CuO conversion, 4.0-16.0 mol % of copper oxide, with ZnO conversion, 19.0-25.0 mol % of zinc oxide, a remaining portion is constituted by nickel oxide, an inevitable impurity is removed with respect to the main components, and as accessory components, with TiO2 conversion, 0.5-2 weight % of titanium oxide, with CuO conversion, 0.35-2 weight % of cobalt oxide are contained.
Abstract translation:本发明的目的是提供一种适用于在高频带(例如,13.56MHz)具有长通信距离的天线元件的铁氧体组合物,由铁氧体组合物形成的铁氧体板,用于天线元件的磁性构件,由 铁氧体板和设置有天线元件的天线元件。 一种铁素体组合物,其中主要成分含有Fe 2 O 3转化率为45.0〜49.5摩尔%的氧化铁,CuO转化率为4.0〜16.0摩尔%,氧化铜为ZnO,ZnO为19.0〜25.0摩尔,氧化锌为19.0〜25摩尔% 剩余部分由氧化镍构成,相对于主要成分除去不可避免的杂质,作为辅助成分,使用TiO 2转化率为0.5〜2重量%的氧化钛,CuO转化率为0.35〜2重量%的氧化钴 被包含。
Abstract:
An antenna module is an antenna module including at least a first radiation electrode, and a first power feeding electrode coupled with the first radiation electrode, and includes: a first dielectric layer including the first power feeding electrode; and a second dielectric layer disposed at one side of the first dielectric layer in a thickness direction of the first power feeding electrode, and a fracture toughness value of the second dielectric layer is larger than a fracture toughness value of the first dielectric layer.
Abstract:
A glass ceramic sintered body having a small dielectric loss in a high frequency band of 10 GHz or higher and a wiring substrate using the same are provided. The glass ceramic sintered body contains crystallized glass, an alumina filler, and silica. The content of the crystallized glass is 45 mass % to 85 mass %, the content of the alumina filler is 14.8 mass % to 50.1 mass % in terms of Al2O3, and the content of silica is 0.2 mass % to 4.9 mass % in terms of SiO2.
Abstract:
An antenna module is an antenna module including at least a first radiation electrode, and a first power feeding electrode coupled with the first radiation electrode, and includes: a first dielectric layer including the first power feeding electrode; and a second dielectric layer disposed at one side of the first dielectric layer in a thickness direction of the first power feeding electrode, and a fracture toughness value of the second dielectric layer is larger than a fracture toughness value of the first dielectric layer.
Abstract:
A glass ceramic sintered body having a small dielectric loss in a high frequency band of 10 GHz or higher and stable characteristics against temperature variation and a wiring substrate using the same are provided. The glass ceramic sintered body contains crystallized glass, an alumina filler, silica, and strontium titanate. The content of the crystallized glass is 50 mass % to 80 mass %, the content of the alumina filler is 15.6 mass % to 31.2 mass % in terms of Al2O3, the content of silica is 0.4 mass % to 4.8 mass % in terms of SiO2, and the content of the strontium titanate is 4 mass % to 14 mass % in terms of SrTiO3.