Abstract:
A system for selecting an equalizer setting of an equalizer to equalize signals received via a communications link. Starting with a first (e.g., minimum) equalizer setting and a threshold voltage near the mid-eye voltage of the equalized output signal, the system estimates the amplitude of the inner eye of the equalized output signal by comparing the equalized output signal to a series of threshold voltages. If the amplitude of the equalized output signal is less than ideal, the system dynamically increases the equalizer setting. The system quickly converges on the equalizer setting for the communication link because, rather than comparing the output signal at every voltage offset using every equalizer setting, the system only evaluates the equalizer settings necessary to select the equalizer setting for the communications link and uses only the voltage offsets necessary to evaluate each equalizer setting.
Abstract:
A system for selecting an equalizer setting of an equalizer to equalize signals received via a communications link. Starting with a first (e.g., minimum) equalizer setting and a threshold voltage near the mid-eye voltage of the equalized output signal, the system estimates the amplitude of the inner eye of the equalized output signal by comparing the equalized output signal to a series of threshold voltages. If the amplitude of the equalized output signal is less than ideal, the system dynamically increases the equalizer setting. The system quickly converges on the equalizer setting for the communication link because, rather than comparing the output signal at every voltage offset using every equalizer setting, the system only evaluates the equalizer settings necessary to select the equalizer setting for the communications link and uses only the voltage offsets necessary to evaluate each equalizer setting.
Abstract:
Circuit including a first port to couple to a first device; a second port to couple to a second device; a first channel having an input coupled to first port and an output coupled to second port, the first channel to re-drive a signal and output re-driven signal; a second channel having an input coupled to second port and an output coupled to first port, the second channel to re-drive a signal and output re-driven signal; and a controller to: enable first channel and disable second channel responsive to detecting a signal edge at first port; enable second channel and disable first channel responsive to detecting a signal edge at second port; sample impedance at first port if signal received at first port is de-asserted while first channel is enabled; and sample impedance at second port if signal received at second port is de-asserted while second channel is enabled.
Abstract:
A redriver system adapted for coupling to a first device and to a second device includes first and second transmitter drivers and a snoop circuit. The first transmitter driver has a first enable input. The second transmitter driver has a second enable input. The snoop circuit is coupled to the first and second enable inputs. The snoop circuit is configured to determine whether the first device and the second device are to operate according to a first protocol. Responsive to the snoop circuit determining that the first and second devices are to operate according to the first protocol, the snoop circuit enables the first transmitter driver and disables the second transmitter driver. Responsive to the snoop circuit determining that the first and second devices are not to operate according to the first protocol, the snoop circuit disables the first transmitter driver and enables the second transmitter driver.
Abstract:
An input/output (I/O) level shifter for a subscriber identification module (SIM) interface includes a controller configured to apply a first enable signal to turn ON a first transmitter when the direction of packet flow is from an interface device to a SIM card, and is configured to apply a second enable signal to turn ON a second transmitter when the direction of packet flow is from the SIM card to the interface device. The controller is configured to not apply the first and the second enable signals concurrently. The controller selectively controls the ON/OFF period of the first and the second transmitter to maintain half-duplex communication on the interface I/O line and the SIM I/O line to prevent undesired positive data feedback.
Abstract:
In a segmented data path, a source is able to “discover” whether any tunable repeater nodes are present. When one or more tunable repeaters are discovered, the source may adjust its link initialization sequence accordingly to train each “hop” individually and thereafter individually configure each intermediary repeater.
Abstract:
A system includes a downstream facing port (DFP) coupled to a video source, an upstream facing port (UFP) coupled to a video sink, and a cable. The cable includes a first end that is connected to the DFP and a second end that is connected to the UFP. The cable is configured to carry a differential auxiliary transmission signal and detect polarity in the differential auxiliary transmission signal.
Abstract:
At least some aspects of the present disclosure provide for a method. In at least one example, the method includes applying first equalization to a received data signal to generate an equalizer signal and comparing the equalized signal to each of a plurality of reference voltages for a predetermined period of time per respective reference voltage to generate a comparison result. The method further includes determining a plurality of counts with each count of the plurality of counts uniquely corresponding to a number of rising edges in the comparison result for each of the plurality of reference voltages. The method further includes comparing at least one of the plurality of counts to at least another of the plurality of counts to determine a relationship among the plurality of counts and applying second equalization to the received data signal based on the determined relationship among the plurality of counts.
Abstract:
A system includes a downstream facing port (DFP) coupled to a video source, an upstream facing port (UFP) coupled to a video sink, and a cable. The cable includes a first end that is connected to the DFP and a second end that is connected to the UFP. The cable is configured to carry a differential auxiliary transmission signal and detect polarity in the differential auxiliary transmission signal.
Abstract:
An example apparatus includes: a first input and a second input, a first equalizer with a third input, a fourth input, and a fifth input, the third input coupled to the first input, the fourth input coupled to the second input, a second equalizer with a sixth input, a seventh input, and an eighth input, the sixth input coupled to the first input, the seventh input coupled to the second input, and a controller coupled to the fifth input and the eighth input.