Abstract:
A method for correcting spatial response for an imaging Fourier transform spectrometer comprises the following steps: a prior step of calculation of the equalization parameters comprising a gain and an offset from data forming calibration scenes; a step of determination of equalization coefficients at a so-called pseudo superpixel level determining the gains and offsets at macropixel level from the data from a raw image that are collected by the imaging spectrometer in image mode, and gains and offsets determined in the prior step; and a step of equalization at pseudo superpixel level, applying the equalization coefficients to a macropixel from an acquisition in the interferogram mode of the imaging spectrometer in order to restore an equalized interferogram.
Abstract:
A method for the acquisition of images by a spacer airborne optical instrument, comprises the following steps: a) acquisition, by the instrument, of a first image having a first field of view including the projection on the ground of the optical axis of the instrument and delimited by a first field edge, the first image being sampled spatially with a first sampling step; b) acquisition, by the same instrument, of a second image having a second field of view not including the projection on the ground of the optical axis of the instrument and extending beyond the first field edge, the second image being sampled spatially with a second sampling step greater than the first sampling step. Space or airborne optical instruments and an image acquisition system for implementing the method are provided.
Abstract:
A device and method for dynamically adapting spatial resolution for imager Fourier transform spectrometers makes it possible to acquire data in interferogram mode and image mode on survey points for an observed scene, each survey point being associated a matrix of macro-pixels and defined by a plurality of zones. For each survey point, analysis of the content of each zone is carried out on the basis of data of the image mode. Classification into clear zone or non-clear zone is carried out as a function of proportion of cloud, and clear-pixel data are generated on the basis of the sum of the data of the macro-pixels of the clear zone class. Survey point data are generated on the basis of the sum of the data of all the macro-pixels of the matrix associated with the survey point. The survey point and clear pixel data streams are transmitted to the ground.