Abstract:
The present invention provides a precursor of positive electrode active substance particles for non-aqueous electrolyte secondary batteries which have a high discharge voltage and a high discharge capacity, hardly suffer from side reactions with an electrolyte solution, and are excellent in cycle characteristics, positive electrode active substance particles for non-aqueous electrolyte secondary batteries, and processes for producing these particles, and a non-aqueous electrolyte secondary battery. The present invention relates to positive electrode active substance particles for non-aqueous electrolyte secondary batteries having a spinel structure with a composition represented by the following chemical formula (1), in which the positive electrode active substance particles satisfy the following characteristic (A) and/or characteristic (B) when indexed with Fd-3m in X-ray diffraction thereof: (A) when indexed with Fd-3m in X-ray diffraction of the positive electrode active substance particles, a ratio of I(311) to I(111) [I(311)/I(111)] is in the range of 35 to 43%, and/or (B) when indexed with Fd-3m in X-ray diffraction of the positive electrode active substance particles, a gradient of a straight line determined by a least square method in a graph prepared by plotting sin θ in an abscissa thereof and B cos θ in an ordinate thereof wherein B is a full-width at half maximum with respect to each peak position 2θ (10 to 90°) is in the range of 3.0×10−4 to 20.0×10−4; and Li1+xMn2-y-zNiyMzO4 Chemical Formula (1) wherein x, y, z fall within the range of −0.05·x·0.15, 0.4·y·0.6 and 0·z·0.20, respectively; and M is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W and Bi.
Abstract:
According to the present invention, there are provided lithium titanate particles which exhibit an excellent initial discharge capacity and an enhanced high-efficiency discharge capacity retention rate as an active substance for non-aqueous electrolyte secondary batteries and a process for producing the lithium titanate particles, and Mg-containing lithium titanate particles.
Abstract:
The present invention relates to Li—Ni-based composite oxide particles comprising Mn, and Co and/or Al, wherein Co and Al are uniformly dispersed within the particles, and Mn is present with a gradient of its concentration in a radial direction of the respective particles such that a concentration of Mn on a surface of the respective particles is higher than that at a central portion thereof. The Li—Ni-based composite oxide particles can be produced by allowing an oxide and a hydroxide comprising Mn to mechanically adhere to Li—Ni-based oxide comprising Co and/or Al; and then heat-treating the obtained material at a temperature of not lower than 400° C. and not higher than 1,000° C. The Li—Ni-based composite oxide particles of the present invention are improved in thermal stability and alkalinity.