Abstract:
The present invention relates to lithium manganate particles having a primary particle diameter of not less than 1 μm and an average particle diameter (D50) of not less than 2 μm and not more than 10 μm as measured by a particle size distribution meter, and forming particles having substantially a single phase, which have a composition represented by the following chemical formula: Li1+xMn2−x−yY1yO4+Y2 where Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti; Y2 is at least one element constituting a sintering aid having a melting point of not higher than 800° C., x and y satisfy 0.03≦x≦0.15 and 0.05≦y≦0.20, respectively, and Y2 is present in an amount of 0.1 to 2.5 mol % based on Mn; the Y1 element being dispersed within the respective particles, and an X-ray diffraction intensity ratio of I(400)/I(111) of the particles being not less than 38% and an X-ray diffraction intensity ratio of I(440)/I(111) thereof being not less than 18%.
Abstract:
The present invention relates to a method for preparing particles intended to be used, as active materials, within a composite electrode for lithium batteries, which are coated with at least one layer of oxide, preferably a layer of metal oxide covering only the areas which are capable of being more reactive with an electrolyte based on lithium hexafluorophosphate LiPF6.
Abstract:
The present invention provides a positive electrode active material for nonaqueous electrolyte secondary battery including a lithium transition metal composite oxide represented by the following formula: LiaNixMn2-xFeyBzO4 wherein 1.00≦a≦1.30, 0.30≦x≦0.60, 0.003≦y≦0.200, and 0.003≦z≦0.200.
Abstract:
A lithium ion secondary battery including: a positive electrode including a positive electrode active material represented by the general formula: Lia(MxMn2-x-yAy)O4 wherein 0.4
Abstract:
Disclosed herein is a core-shell spinel cathode active material for lithium secondary batteries. The core portion of the active material is made of a spinel manganese-containing material substituted with fluorine or sulfur, having 4V-grade potential and showing low-cost and high-output characteristics, and the shell portion, which comes into contact with an electrolyte, is made of a spinel transition metal-containing material, having excellent thermal stability and cycle life characteristics and showing low reactivity with the electrolyte. Thus, the cathode active material shows significantly improved cycle life characteristics and excellent thermal stability.
Abstract:
A lithium mixed metal oxide containing Li, Mn and M (M represents at least one metal element, and is free from Li or Mn), and having a peak around 1.5 Å (peak A), a peak around 2.5 Å (peak B), and the value of IB/IA is not less than 0.15 and not more than 0.9 in a radial distribution function obtained by subjecting an extended X-ray absorption fine structure (EXAFS) spectrum at K absorption edge of Mn in the oxide to the Fourier transformation, wherein IA is the intensity of peak A and IB is the intensity of peak B.
Abstract:
The present invention relates to lithium manganate particles having a primary particle diameter of not less than 1 μm and an average particle diameter (D50) of not less than 2 μm and not more than 10 μm as measured by a particle size distribution meter, and forming particles having substantially a single phase, which have a composition represented by the following chemical formula: Li1+xMn2−x−yY1yO4+Y2 where Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti; Y2 is at least one element constituting a sintering aid having a melting point of not higher than 800° C., x and y satisfy 0.03≦x≦0.15 and 0.05≦y≦0.20, respectively, and Y2 is present in an amount of 0.1 to 2.5 mol % based on Mn; the Y1 element being dispersed within the respective particles, and an X-ray diffraction intensity ratio of I(400)/I(111) of the particles being not less than 38% and an X-ray diffraction intensity ratio of I(440)/I(111) thereof being not less than 18%. The lithium manganate particles of the present invention have a high output and are excellent in high-temperature stability.
Abstract:
The present invention enables to obtain both of a cycle characteristic and a high load characteristic. The present invention discloses a positive electrode active material containing lithium composite manganese oxide having a spinel structure for a non-aqueous electrolyte cell and a non-aqueous electrolyte cell using this material. The lithium composite manganese oxide having spinel structure has its primary particle diameter not less than 0.05 μm and not greater than 10 μm, forming an aggregate, and a specific surface measured by the BET method in a range not less than 0.2 m2/g and not greater than 2 m2/g.