摘要:
A processing circuit, which carries out coincidence counting, acquires calibration data so that time delays of γ-ray detection signals from radiation detectors coincide with one another. A technique for acquiring calibration data faster and easily is provided to attain high time precision and respond to multi-channeling of detectors. A signal from a test signal generator is sent to signal processing apparatuses and coincidence count events are generated as a test. The events generated are processed by a delay time control apparatus and a variable delay circuit is controlled to improve the accuracy of coincidence counting.
摘要:
A processing circuit, which carries out coincidence counting, acquires calibration data so that time delays of γ-ray detection signals from radiation detectors coincide with one another. A technique for acquiring calibration data faster and easily is provided to attain high time precision and respond to multi-channeling of detectors. A signal from a test signal generator is sent to signal processing apparatuses and coincidence count events are generated as a test. The events generated are processed by a delay time control apparatus and a variable delay circuit is controlled to improve the accuracy of coincidence counting.
摘要:
A processing circuit, which carries out coincidence counting, acquires calibration data so that time delays of γ-ray detection signals from radiation detectors coincide with one another. A technique for acquiring calibration data faster and easily is provided to attain high time precision and respond to multi-channeling of detectors. A signal from a test signal generator is sent to signal processing apparatuses and coincidence count events are generated as a test. The events generated are processed by a delay time control apparatus and a variable delay circuit is controlled to improve the accuracy of coincidence counting.
摘要:
A processing circuit, which carries out coincidence counting, acquires calibration data so that time delays of γ-ray detection signals from radiation detectors coincide with one another. A technique for acquiring calibration data faster and easily is provided to attain high time precision and respond to multi-channeling of detectors. A signal from a test signal generator is sent to signal processing apparatuses and coincidence count events are generated as a test. The events generated are processed by a delay time control apparatus and a variable delay circuit is controlled to improve the accuracy of coincidence counting.
摘要:
A positron emission tomography apparatus installs a plurality of detector units in the circumference of a bed. The detector unit installs a plurality of combined substrates including detectors, analogue ASICs, and a digital ASIC and a voltage adjustment device inside a housing. A partition plate installed inside the housing separates the region inside the housing into a first region installed with the combined substrates and a second region installed with the voltage adjustment device. The partition plate blocks noise generated in the voltage adjustment device so as not to affect γ-ray detection signals outputted from the detectors, thereby preventing the effect of the noise generated in the voltage adjustment device toward γ-ray detection signals and shortening the examination time.
摘要:
A positron emission tomography apparatus installs a plurality of detector units in the circumference of a bed. The detector unit installs a plurality of combined substrates including detectors, analogue ASICs, and a digital ASIC and a voltage adjustment device inside a housing. A partition plate installed inside the housing separates the region inside the housing into a first region installed with the combined substrates and a second region installed with the voltage adjustment device. The partition plate blocks noise generated in the voltage adjustment device so as not to affect γ-ray detection signals outputted from the detectors, thereby preventing the effect of the noise generated in the voltage adjustment device toward γ-ray detection signals and shortening the examination time.
摘要:
A radiological imaging apparatus allowing semiconductor radiation detectors to be easily replaced with new ones and densely arranged. Terminals (31cjk) and (33cjk) are provided on a bottom surface of a detector aggregate (40mn) including a plurality of semiconductor radiation detectors (1); the terminals is connected to electrodes (3 and 4) of the detectors (1). A plurality of zero insertion force connectors (56) are provided on a connecting device (33jk) installed on a support substrate (32h). The terminals (31cjk and 33cjk) are detachably attached to the zero insertion force connectors (56) to mount the detector aggregates (40mn) that are the semiconductor radiation detectors (1), on the support substrate (32h). When the detector aggregates (40mn) are attached to the zero insertion force connectors (56), since no frictional force acts on the terminals, the size of the gap between the detector aggregates (40mn) is reduced.
摘要:
The semiconductor radiological detector 1 minimizes a dead space resulting from the draw-out of a signal line from an electrode and which allows a number of semiconductor devices to be densely arranged to improve sensitivity and spatial resolution. The semiconductor radiological detector 1 comprises a semiconductor device 2, an anode 3 attached to one surface of the semiconductor device 2, and a cathode 4 attached to the other surface of the semiconductor device 2. A signal line 5 is provided on the anode 3; the signal line 5 extends straight from the anode 3 and is connected to an X axis wire 12. Another signal line 13 is provided on the cathode 4; the signal line 13 extends straight from the cathode 4 and is connected to a Y axis wire 14.
摘要:
A nuclear medicine diagnostic apparatus is provided that can improve time resolution and energy resolution and diagnosing accuracy by enhancing radiation detectors in terms of moisture-proofing and dust-proofing effects while efficiently cooling the radiation detectors. The apparatus has a first region A in which radiation detectors are to be accommodated, and a second region B in which signal processors are to be accommodated. These regions are provided inside a housing member 5 via an adiabatic member 7. The housing member 5 also has a ventilation port 8 formed to communicate with the first region A and equipped with an anti-dust filter. Ventilation holes 34 are formed to communicate with the first region B and serving as entrances for cooling air. Unit fans 33 serve as exits for the cooling air.
摘要:
A γ-ray signal processing section 60′ determines a detection time of a γ ray based on a α-ray detection signal outputted from a semiconductor radiation detector for detecting the γ ray, and determines the energy of the γ ray. Then, a time correction circuit 70 obtains, based on the energy of the γ ray, a detection value of the detection time that corresponds to the energy of the γ ray from a time correction table indicating the relationship between the energy of the γ ray and the correction value of the detection time of the γ ray, and corrects the detection time according to the obtained correction value of the detection time. Coincidence counting is performed on the γ ray in a coincidence counting circuit 80 based on the corrected detection time.