Abstract:
A method of measuring superconducting critical current in persistent mode using superconducting closed loops which allow the persistent current to flow without any joints. This persistent critical current is different than traditional resistive critical current that is the upper limit of the superconducting current carrying capacity, and provides the information about the range of critical current in persistent mode that is more close to applications in MRI, SMES, and Maglev operations. The measurement can be used as a quality control method in the manufacturing process and a piece of crucial information to magnet manufacturers for the design and fabrication of magnet. The superconducting materials include the second generation superconducting wires (coated conductors) based on Rare Earth (RE) Barium Copper Oxide superconducting material (REBa2Cu3O6+x, REBCO), or any other type of superconducting wires that can be manufactured in the form of tape.
Abstract:
A method of measuring superconducting critical current in persistent mode using superconducting closed loops which allow the persistent current to flow without any joints. This persistent critical current is different than traditional resistive critical current that is the upper limit of the superconducting current carrying capacity, and provides the information about the range of critical current in persistent mode that is more close to applications in MRI, SMES, and Maglev operations. The measurement can be used as a quality control method in the manufacturing process and a piece of crucial information to magnet manufacturers for the design and fabrication of magnet. The superconducting materials include the second generation superconducting wires (coated conductors) based on Rare Earth (RE) Barium Copper Oxide superconducting material (REBa2Cu3O6+x, REBCO), or any other type of superconducting wires that can be manufactured in the form of tape.
Abstract:
Provided are devices for inducing a current in a closed loop superconducting material including a magnetic field source housed within a coil former substantially coaxial with the magnetic field source, and a base optionally in physical contact with a support tube. A closed loop superconducting material is held in a loop position by the coil former and the base such that current passing through the magnetic field source will produce a current in the superconducting material by induction. By a process of modified current sweep reversal, the rate of relaxation may be reduced in the superconducting material relative to the absence of a reversal.