-
1.
公开(公告)号:US11878426B2
公开(公告)日:2024-01-23
申请号:US17314039
申请日:2021-05-06
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyu Chen , Ligang Ge , Hongge Wang , Mingqiang Huang , Jiangchen Zhou , Yizhang Liu , Zheng Xie , Youjun Xiong
IPC: B25J9/16
CPC classification number: B25J9/1666 , B25J9/162 , B25J9/1653
Abstract: A biped robot gait control method as well as a robot and a computer readable storage medium are provided. During the movement, the system obtains a current supporting pose of a current supporting leg of the biped robot, and calculates a relative pose between the supporting legs based on the current supporting pose and a preset ideal supporting pose of a next step. The system further calculates modified gait parameters of the next step based on the relative pose between the two supporting legs and a joint distance between left and right ankle joints in an initial state of the biped robot when standing. Finally, the system controls the next supporting leg to move according to the modified gait parameters.
-
公开(公告)号:US12005584B2
公开(公告)日:2024-06-11
申请号:US17488341
申请日:2021-09-29
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Hongge Wang , Chunyu Chen , Yizhang Liu , Ligang Ge , Jie Bai , Xingxing Ma , Jiangchen Zhou , Youjun Xiong
CPC classification number: B25J9/1653 , B25J9/1607 , B25J9/1664 , B25J13/088
Abstract: A pose control method for a robot includes: estimating a first set of joint angular velocities of all joints of the robot according to a balance control algorithm; estimating a second set of joint angular velocities of all joints of the robot according to a momentum planning algorithm; estimating a third set of joint angular velocities of all joints of the robot according to a pose return-to-zero algorithm; and performing pose control on the robot according to the first set of joint angular velocities, the second set of joint angular velocities, and the third set of joint angular velocities.
-
公开(公告)号:US11983012B2
公开(公告)日:2024-05-14
申请号:US17462019
申请日:2021-08-31
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyu Chen , Yizhang Liu , Ligang Ge , Hongge Wang , Jie Bai , Jiangchen Zhou , Zheng Xie
IPC: G05D1/00 , B62D57/032
CPC classification number: G05D1/0214 , G05D1/0231 , B62D57/032
Abstract: A dynamic footprint set generation method, a biped robot using die same, and a computer readable storage medium are provided. The method includes: obtaining preset footprint calculation parameters; calculating a landing point position based on the preset footprint calculation parameters; determining a landing point range based on a landing point position, and performing a collision detection on the landing point range; recording the corresponding landing point position in a footprint set in response to the detection result representing there being no collision; obtaining a preset adjustment amplitude to update a preset displacement angle after the recording is completed; and returning to the calculating the landing point position until the footprint set is generated. By continuously adjusting the preset displacement angle, each landing point position is calculated accordingly, and the valid landing point positions are recorded in the footprint set, which provides more feasible landing points for navigation planning.
-
公开(公告)号:US20230278212A1
公开(公告)日:2023-09-07
申请号:US18091292
申请日:2022-12-29
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: QIUYUE LUO , Yizhang Liu , Ligang Ge , Chunyu Chen , Jiangchen Zhou , Meng Yen
IPC: B25J9/16
CPC classification number: B25J9/1664 , B25J9/1602 , B25J9/1653 , B25J9/163
Abstract: A gait planning method for a robot includes: constructing a first phase variable of a gait planning of the robot, wherein the first phase variable is a function of two position components of a torso of the robot on a horizontal plane; constructing a second phase variable based on the first phase variable, wherein the second phase variable is a function of the first phase variable, and a slope of the second phase variable is smaller than a slope of the first phase variable when a foot of a swing leg of the robot starts to touch a support surface; and performing the gait planning on the foot of the swing leg using the second phase variable to obtain a planned trajectory of the foot of the swing leg.
-
5.
公开(公告)号:US12280510B2
公开(公告)日:2025-04-22
申请号:US17678037
申请日:2022-02-23
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Chunyu Chen , Youjun Xiong , Yizhang Liu , Qiuyue Luo , Ligang Ge , Jie Bai , Jiangchen Zhou
IPC: B62D57/00 , B25J9/16 , B62D57/032
Abstract: A biped robot control methods and a biped robot using the same as well as a computer readable storage medium are provided. The method includes: obtaining an initial distance between a centroid of a double inverted pendulum model of the biped robot and a support point of the biped robot, an initial moving speed of the centroid and an initial displacement of the centroid; calculating a measured value of a stable point of the doable inverted pendulum model based on the initial distance and the initial moving speed; calculating a control output quantity based on the initial moving speed and the measured value of the stable point; calculating a desired displacement of the centroid of the double-inverted pendulum model based on the initial moving speed, the initial displacement, and the control output quantity; and controlling the biped robot to move laterally according to the desired displacement.
-
公开(公告)号:US12138803B2
公开(公告)日:2024-11-12
申请号:US18089588
申请日:2022-12-28
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Chunyu Chen , Yizhang Liu , Ligang Ge , Jie Bai , Jiangchen Zhou , Qiuyue Luo , Youjun Xiong
IPC: B25J9/16 , B25J13/08 , B62D57/032
Abstract: A method for controlling a legged robot includes: in response to detection of a collision event associated with a foot of a swing leg of the biped robot, terminating a trajectory component planning of the swing leg in a collision direction; calculating a position offset in the collision direction according to an external force that is received by the foot of the swing leg in the collision direction and obtained in real time, based on a foot dragging control mode, and determining a replanned trajectory component in the collision direction based on the position offset; and controlling the swing leg to move based on the replanned trajectory component in the collision direction and a desired trajectory component of the swing leg in a non-collision direction.
-
公开(公告)号:US12070856B2
公开(公告)日:2024-08-27
申请号:US17557076
申请日:2021-12-21
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Hongge Wang , Chunyu Chen , Yizhang Liu , Ligang Ge , Jie Bai , Xingxing Ma , Jiangchen Zhou
IPC: B25J9/16 , B62D57/02 , G05B19/41 , G05B19/4155
CPC classification number: B25J9/1605 , B25J9/1633 , B62D57/022 , G05B19/4155 , G05B2219/50391
Abstract: A robot balance control method as well as a robot using the same and a computer readable storage medium are provided. In the method, a brand new flywheel model different from the existing flywheel model is created. In this flywheel model, the foot of the support leg of the robot is equivalent to the massless link of the flywheel model, while rest parts of the robot are equivalent to the flywheel of the flywheel model. Compared with the various models in the prior art, this flywheel model is more in line with the actual situation of the robot during the monoped supporting period. By controlling the posture of the foot of the support leg based on this flywheel model, a better balance effect can be achieved, which avoids the overturning of the robot.
-
公开(公告)号:US20230191604A1
公开(公告)日:2023-06-22
申请号:US18071462
申请日:2022-11-29
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Ligang Ge , Yizhang Liu , Chunyu Chen , Qiuyue Luo , Jiangchen Zhou , Meng Yan , Youjun Xiong
IPC: B25J9/16 , G05B19/4155
CPC classification number: B25J9/1664 , B25J9/1605 , G05B19/4155 , G05B2219/50391
Abstract: A robot stability control method includes: obtaining a desired zero moment point (ZMP) and a fed-back actual ZMP of a robot at a current moment; based on a ZMP tracking control model, the desired ZMP and the actual ZMP, calculating a desired value of a motion state of a center of mass of the robot at the current moment, wherein the desired value of the motion state of the center of mass comprises a correction amount of the position of the center of mass; based on a spring-mass-damping-acceleration model and the desired value of the motion state of the center of mass, calculating a lead control input amount for the correction amount of the position of the center of mass; and controlling motion of the robot according to the lead control input amount and a planned value of the position of the center of mass at the current moment.
-
公开(公告)号:US20220193899A1
公开(公告)日:2022-06-23
申请号:US17488341
申请日:2021-09-29
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Hongge Wang , Chunyu Chen , Yizhang Liu , Ligang Ge , Jie Bai , Xingxing Ma , Jiangchen Zhou , Youjun Xiong
Abstract: A pose control method for a robot includes: estimating a first set of joint angular velocities of all joints of the robot according to a balance control algorithm; estimating a second set of joint angular velocities of all joints of the robot according to a momentum planning algorithm; estimating a third set of joint angular velocities of all joints of the robot according to a pose return-to-zero algorithm; and performing pose control on the robot according to the first set of joint angular velocities, the second set of joint angular velocities, and the third set of joint angular velocities.
-
公开(公告)号:US12285870B2
公开(公告)日:2025-04-29
申请号:US18070313
申请日:2022-11-28
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Chunyu Chen , Ligang Ge , Yizhang Liu , Jiangchen Zhou , Qiuyue Luo , Youjun Xiong
IPC: B25J9/16 , B25J13/08 , B62D57/032
Abstract: A method of controlling a robot includes: obtaining an inertia matrix and a slack variable of the robot, and determining a momentum equation of the robot according to the inertia matrix and the slack variable; obtaining reference joint angles corresponding to a reference action of the robot; determining an optimization objective function of the momentum equation according to a first preset weight coefficient of the slack variable and a second preset weight coefficient of the reference joint angles; and determining joint angles of the robot according to the optimization objective function, and driving the robot to move according to the joint angles of the robot.
-
-
-
-
-
-
-
-
-