Humanoid robot control method, humanoid robot using the same, and computer readable storage medium

    公开(公告)号:US11904472B2

    公开(公告)日:2024-02-20

    申请号:US17504544

    申请日:2021-10-19

    Abstract: A humanoid robot control method, a mobile machine using the same, and a computer readable storage medium are provided. The method includes: mapping posture information of leg joints of a human body to leg joint servos of a humanoid robot to obtain an expected rotation angle and an expected rotation angular velocity of non-target optimized joint servos of the leg joint servos and an expected rotation angle and an expected rotation angular velocity of target optimized joint servos of the leg joint servos; obtaining an optimization objective function corresponding to the target optimized joint servos of the leg joint servos; optimizing the expected rotation angle and the expected rotation angular velocity of the target optimized joint servos to obtain a corrected expected rotation angle and a corrected expected rotation angular velocity of the target optimized joint servos; and controlling each of the leg joint servos of the humanoid robot.

    GAIT CONTROL METHOD, BIPED ROBOT, AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20230064815A1

    公开(公告)日:2023-03-02

    申请号:US17732568

    申请日:2022-04-29

    Abstract: A method for controlling gait of a biped robot includes: collecting a lateral center of mass (CoM) speed and a lateral CoM position of the biped robot when the biped robot walks in place, calculating phase variables of virtual constraints corresponding to the CoM of the biped robot in a first phase and a second phase according to the lateral CoM speed and the lateral CoM position; constructing motion trajectory calculation equations for the biped robot based on the phase variables corresponding to the first phase and the second phase, respectively; and finding inverse solutions for joints of the biped robot using the motion trajectory calculation equations to obtain joint angles corresponding to each of the joints of the biped robot to realize gait control.

    CENTER OF MASS TRAJECTORY GENERATING METHOD, ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20220388169A1

    公开(公告)日:2022-12-08

    申请号:US17726548

    申请日:2022-04-22

    Abstract: A method for generating a center of mass (CoM) trajectory includes determining an actual pose of a center of mass (CoM), a pose of a left foot, and a pose of a right pose of a robot; determining a first pose tracking vector of the robot according to the actual pose of the CoM and the pose of the left foot, and determining a second pose tracking vector of the robot according to the actual pose of the CoM and the pose of the right foot; and controlling a desired pose of the CoM of the robot to alternately track the pose of the left foot and the pose of the right foot, according to the first pose tracking vector and the second pose tracking vector, so as to generate a desired CoM trajectory of the robot.

    GAIT PLANNING METHOD AND ROBOT USING THE SAME AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20220355479A1

    公开(公告)日:2022-11-10

    申请号:US17678030

    申请日:2022-02-23

    Abstract: A gait planning method and a robot using the same as well as a computer readable storage medium are provided. The method includes: determining a reference leg length l0 and a leg length variation range A of a robot; performing a trajectory planning on a length of at least one of the legs of the robot using; an equation including the reference leg length, the leg length variation range, and a preset recurrent excitation function of a time variable t. In this manner, the trajectory planning for the leg length of the robot during motion is performed according to the characteristics of motion scene such as robot jumping or running so that the change of the leg length of the robot is adapted to the motion process, which greatly improves the stability of the robot in the motion scene such as jumping or running.

    Trajectory planning method, computer-readable storage medium, and robot

    公开(公告)号:US12292738B2

    公开(公告)日:2025-05-06

    申请号:US18222448

    申请日:2023-07-16

    Abstract: A trajectory planning method, a computer-readable storage medium, and a robot are provided. The method includes: constructing a phase variable of a trajectory planning of a robot, where the phase variable is a function of two position components of a torso of the robot on a horizontal plane; and performing, using the phase variable replacing a time variable, the trajectory planning on a swinging leg of the robot in each preset coordinate axis direction. In this manner, the robot can no longer continue to follow the established trajectory after being disturbed by the environment, but make state adjustments according to the disturbance received to offset the impact of the disturbance, thereby maintaining walking stability and avoiding the problem of early or late landing of the swinging leg.

    WALKING CONTROL METHOD, BIPED ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20230202027A1

    公开(公告)日:2023-06-29

    申请号:US18090457

    申请日:2022-12-28

    CPC classification number: B25J9/1602 B62D57/032

    Abstract: A walking control method for a biped robot includes: detecting whether the biped robot is in an unbalanced state; in response to detection that the biped robot is in the unbalanced state, obtaining a predicted balance step length corresponding to the biped robot in the unbalanced state; performing a smooth transition processing on the predicted balance step length according to a current movement step length of the biped robot to obtain a desired balance step length corresponding to the predicted balance step length; determining a planned leg trajectory of the biped robot according to the desired balance step length; and controlling a current swing leg of the biped robot to move according to the planned leg trajectory.

    BIPED ROBOT CONTROL METHOD AND BIPED ROBOT USING THE SAME AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20220379480A1

    公开(公告)日:2022-12-01

    申请号:US17678037

    申请日:2022-02-23

    Abstract: A biped robot control methods and a biped robot using the same as well as a computer readable storage medium are provided. The method includes: obtaining an initial distance between a centroid of a double inverted pendulum model of the biped robot and a support point of the biped robot, an initial moving speed of the centroid and an initial displacement of the centroid; calculating a measured value of a stable point of the doable inverted pendulum model based on the initial distance and the initial moving speed; calculating a control output quantity based on the initial moving speed and the measured value of the stable point; calculating a desired displacement of the centroid of the double-inverted pendulum model based on the initial moving speed, the initial displacement, and the control output quantity; and controlling the biped robot to move laterally according to the desired displacement.

    DYNAMIC FOOTPRINT SET GENERATION METHOD, BIPED ROBOT USING THE SAME, AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20220206501A1

    公开(公告)日:2022-06-30

    申请号:US17462019

    申请日:2021-08-31

    Abstract: A dynamic footprint set generation method, a biped robot using die same, and a computer readable storage medium are provided. The method includes: obtaining preset footprint calculation parameters; calculating a landing point position based on the preset footprint calculation parameters; determining a landing point range based on a landing point position, and performing a collision detection on the landing point range; recording the corresponding landing point position in a footprint set in response to the detection result representing there being no collision; obtaining a preset adjustment amplitude to update a preset displacement angle after the recording is completed; and returning to the calculating the landing point position until the footprint set is generated. By continuously adjusting the preset displacement angle, each landing point position is calculated accordingly, and the valid landing point positions are recorded in the footprint set, which provides more feasible landing points for navigation planning.

Patent Agency Ranking