摘要:
A portable articulated arm coordinate measuring machine (AACMM) having an integrated camera captures 2D images of an object at three or more different poses. A processor determines 3D coordinates of a smoothly continuous edge point of the object based at least in part on the captured 2D images and pose data provided by the AACMM.
摘要:
A portable articulated arm coordinate measuring machine includes a noncontact 3D measuring device that has a projector that is manually movable by an operator from a first position to a second position. The projector is configured to emit a first pattern of light onto an object. The noncontact 3D measuring device further includes a scanner camera and an edge-detecting camera. The scanner camera is arranged to receive the first pattern of light reflected from the surface of the object. The edge-detecting camera arranged to receive light reflected from an edge feature of the object. The articulated arm coordinate measurement machine includes a processor configured to determine first 3D coordinates of an edge point of the edge feature based on electrical signals received from the scanner camera and the edge-detecting camera.
摘要:
A portable articulated arm coordinate measuring machine includes a noncontact 3D measuring device that has a projector configured to emit a first pattern of light onto an object, a scanner camera arranged to receive the first pattern of light reflected from the surface of the object, an edge-detecting camera arranged to receive light reflected from an edge feature of the object, and a processor configured to determine first 3D coordinates of an edge point of the edge feature based on electrical signals received from the scanner camera and the edge-detecting camera.
摘要:
A portable articulated arm coordinate measurement machine, comprising: a manually positionable articulated arm having opposed first and second ends, the articulated arm including a plurality of connected arm segments, each arm segment including at least one position transducer for producing a position signal; a base section connected to the second end; and a probe assembly including a probe end and a handle; wherein the probe assembly is connected to the first end; wherein the handle contains electronics that include a processor; wherein the handle is configured to be gripped by a hand; and wherein the articulated arm coordinate measurement machine is configured to measure a three-dimensional coordinate of a point in space associated with the probe end.
摘要:
A portable articulated arm coordinate measuring machine is provided. The coordinate measuring machine includes a base with an arm portion. A probe end is coupled to an end of the arm portion distal from the base. A device configured to emit a coded structured light onto an object to determine the three dimensional coordinates of a point on the object.
摘要:
A portable articulated arm coordinate measurement machine is provided. An articulated arm is provided having a plurality of arm segments. Each arm segment includes an angular encoder for producing a signal corresponding to an angle of rotation. A shaft rotates which about an axis is attached to an inner portion of a first and second bearing. A patterned disk is attached to the shaft. A housing is attached to an outer portion of the first and second bearing. A read head is attached to the housing in proximity to the patterned disk which produces an electrical signal in response to an angle of rotation. The patterned disk and the first arm segment supported for rotation about the axis by only the first and second bearing. A circuit receives the electrical signal and provides an angle and data corresponding to a position of the probe.
摘要:
A portable articulated arm coordinate measurement machine (AACMM) includes a manually positionable articulated arm having opposed first and second ends, the articulated arm including a plurality of connected arm segments, each arm segment including at least one position transducer for producing a position signal resulting in the articulated arm having a plurality of position transducers. The AACMM also includes a base section connected to the second end; and a probe assembly connected to the first end, the probe assembly having a probe end, an inner core, and a handle; wherein the probe end is fixed with respect to the inner core, the handle is configured to rotate about the inner core, and the probe end is configured to measure a three-dimensional coordinate of a point in space.
摘要:
Exemplary embodiments include a portable articulated arm coordinate measurement machine, including a manually positionable articulated arm having opposed first and second ends, the arm including a plurality of connected arm segments, each of the arm segments including at least one position transducer for producing a position signal, a measurement device attached to a first end of the articulated arm coordinate measurement machine, an electronic circuit for receiving the position signals from the transducers and for providing data corresponding to a position of the measurement device, at least one sensor element, which is disposed on the articulated arm coordinate measurement machine, that is responsive to electromagnetic radiation and produces an electrical signal in response to a temperature of an object and an electronic system that converts the electrical signal into a temperature value.
摘要:
A portable coordinate measurement machine for measuring the position of an object in a selected volume comprises includes an a positionable articulated arm having a plurality of jointed arm segments. The arm includes a measurement probe having an integrated line laser scanner mounted thereon. The laser may be a fiber coupled laser. Wireless data transfer and communication capability for the CMM is also possible.
摘要:
A gap welding process (10) for manipulating a movable robotic welder (30) for making a weld between two or more substantially immovable work pieces (51) using a higher level programming language (20). The gap welding process (10) performs a data transfer routine which takes spreadsheet data (18) representing expected variables, runs a data conversion program (20) that creates weld program data including point position, user frames (34 and 36), weld schedule, seam tracking schedule, weave schedule, azimuth orientation, travel speed, wait time, weave type and number of digital output control data. The gap welding process (10) also performs a gap-sensing routine (28) for actual weld gap measuring by using the robotic welder (30) to touch specific locations on pieces forming the gap or fixturing to produce weld variance data. The gap welding process (10) then uses a weld control program in conjunction with the weld program data (22), weld variance data (26), and feedback data (44) that is gathered during the welding process to determine and perform the correct manipulation required to produce torch movements to accurately weld the gap (32).