Abstract:
An electroformed sheath for protecting an airfoil includes a sheath body and a mandrel insert is provided. The sheath body includes a leading edge. The sheath body includes a pressure side wall and an opposed suction side wall, which side walls meet at the leading edge and extend away from the leading edge to define a cavity between the side walls. The sheath body includes a head section between the leading edge and the cavity. The mandrel insert is positioned between the pressure side and suction side walls, and includes a generally wedge-shaped geometry. A method for protecting an airfoil includes: 1) securing a mandrel insert to a mandrel; 2) electroplating a sheath body onto the mandrel and the mandrel insert; 3) removing the mandrel from the sheath body so that a sheath cavity is defined within the sheath body; and 4) securing the airfoil within the sheath cavity.
Abstract:
A compressor for use in a gas turbine engine comprises a compressor rotor including blades and a disc, with a bore defined radially inwardly of the disc. A high pressure air tap includes a lower temperature tapped path and a higher temperature tapped path and a valve for selectively delivering one of the lower temperature tapped path and the higher temperature tapped path into the bore of the disc. The valve is operable to selectively block flow of either of the lower pressure and higher pressure tapped paths to the bore of the disc, with the disc including holes to allow air from compressor chambers to communicate with the bore of the disc. A gas turbine engine and a method of operating a gas turbine engine are also disclosed.
Abstract:
A rotor blade for a gas turbine engine includes a blade extending from a root and a contoured tip portion at a first end of the blade. The first end is opposite the root. The contoured tip portion includes a first sloped region and a second sloped region. The second sloped region is steeper than the first sloped region, relative to a platform.
Abstract:
An electroformed sheath for protecting an airfoil includes a sheath body and a mandrel insert is provided. The sheath body includes a leading edge. The sheath body includes a pressure side wall and an opposed suction side wall, which side walls meet at the leading edge and extend away from the leading edge to define a cavity between the side walls. The sheath body includes a head section between the leading edge and the cavity. The mandrel insert is positioned between the pressure side and suction side walls, and includes a generally wedge-shaped geometry. A method for protecting an airfoil includes: 1) securing a mandrel insert to a mandrel; 2) electroplating a sheath body onto the mandrel and the mandrel insert; 3) removing the mandrel from the sheath body so that a sheath cavity is defined within the sheath body; and 4) securing the airfoil within the sheath cavity.
Abstract:
A rotor blade for a gas turbine engine includes a blade extending from a root and a contoured tip portion at a first end of the blade. The first end is opposite the root. The contoured tip portion includes a first sloped region and a second sloped region. The second sloped region is steeper than the first sloped region, relative to a platform.
Abstract:
In one exemplary embodiment, a gas turbine engine system for cooling engine components includes an engine core, a core housing containing the engine core, an engine core driven fan forward of the core housing, a nacelle surrounding the fan and the core housing, and a bypass duct defined between an outer diameter of the core housing and an inner diameter of the nacelle. Also included is a thermal management system having a coolant circuit including at least one of a first heat exchanger disposed on the inner diameter of the nacelle and a second heat exchanger disposed on a leading edge of a BiFi spanning the bypass duct. The first heat exchanger is in thermal communication with the second heat exchanger.
Abstract:
In one exemplary embodiment, a gas turbine engine system for cooling engine components includes an engine core, a core housing containing the engine core, an engine core driven fan forward of the core housing, a nacelle surrounding the fan and the core housing, and a bypass duct defined between an outer diameter of the core housing and an inner diameter of the nacelle. Also included is a thermal management system having a coolant circuit including at least one of a first heat exchanger disposed on the inner diameter of the nacelle and a second heat exchanger disposed on a leading edge of a BiFi spanning the bypass duct. The first heat exchanger is in thermal communication with the second heat exchanger.
Abstract:
A compressor for use in a gas turbine engine comprises a compressor rotor including blades and a disc, with a bore defined radially inwardly of the disc. A high pressure air tap includes a lower temperature tapped path and a higher temperature tapped path and a valve for selectively delivering one of the lower temperature tapped path and the higher temperature tapped path into the bore of the disc. The valve is operable to selectively block flow of either of the lower pressure and higher pressure tapped paths to the bore of the disc, with the disc including holes to allow air from compressor chambers to communicate with the bore of the disc. A gas turbine engine and a method of operating a gas turbine engine are also disclosed.