Abstract:
In accordance with one aspect of the disclosure, a rotor is disclosed. The rotor may include a disk having a central axis, an airfoil radially extending from the disk, a bayonet tab extending radially from the disk, and a lock. The lock may further include a short tab and a long tab, both extending radially from the disk and in an axial direction with respect to the central axis. The long tab may have a greater axial length than the short tab.
Abstract:
A gas turbine engine includes a shaft and a heatshield that circumscribes the shaft. The heatshield defines a cylindrical body that has radially inner and outer sides and extends between first and second axial ends. The heatshield is exclusively supported on the shaft at the first and second axial ends. The heatshield includes at least one seal member on the radially outer side. A damper member is disposed at the radially inner side of the heatshield for attenuating vibration of the heatshield.
Abstract:
According to one embodiment, a mini-disk of a gas turbine engine having an axis is provided. The mini-disk includes a bore, a web extending radially with respect to the axis of the gas turbine engine from the bore, a base extending axially with respect to the axis of the gas turbine engine from the bore, a connector located on an end of the base, the connector configured to connect with a hub arm of the gas turbine engine, and an expansion feature configured in the base and located between the bore and the connector, the expansion feature configured to reduce an axial stiffness of the base.
Abstract:
A minidisk for a rotor system may comprise a balance flange defining a hole array, which may include a first hole having a first width. The first hole may be configured to receive a balance weight. A second hole and a third hole may have a second width. The second hole and the third hole may be disposed adjacent to the first hole. The second width may be greater than the first width.
Abstract:
In accordance with one aspect of the disclosure, a rotor is disclosed. The rotor may include a disk having a central axis, an airfoil radially extending from the disk, a bayonet tab extending radially from the disk, and a lock. The lock may further include a short tab and a long tab, both extending radially from the disk and in an axial direction with respect to the central axis. The long tab may have a greater axial length than the short tab.
Abstract:
According to one embodiment, a mini-disk of a gas turbine engine having an axis is provided. The mini-disk includes a bore, a web extending radially with respect to the axis of the gas turbine engine from the bore, a base extending axially with respect to the axis of the gas turbine engine from the bore, a connector located on an end of the base, the connector configured to connect with a hub arm of the gas turbine engine, and an expansion feature configured in the base and located between the bore and the connector, the expansion feature configured to reduce an axial stiffness of the base.
Abstract:
A minidisk for a rotor system may comprise a balance flange defining a hole array, which may include a first hole having a first width. The first hole may be configured to receive a balance weight. A second hole and a third hole may have a second width. The second hole and the third hole may be disposed adjacent to the first hole. The second width may be greater than the first width.
Abstract:
Mini-disks of gas turbine engines are provided having an axially extending portion extending axially with respect to an axis of the engine, the axially extending portion configured to engage with a hub arm of a compressor of the engine, a radially extending portion extends radially with respect to the axis, the radially extending portion configured to engage with an attachment of a turbine disk of the gas turbine engine, an intermediate portion extending between the axially extending portion and the radially extending portion, and at least one mini-disk connector configured to engage with a portion of the turbine disk of the gas turbine engine to prevent radial movement of the mini-disk during operation.
Abstract:
A seal segment for a gas turbine engine includes a first axial span that extends between the first radial span and the second radial span. A second axial span extends between the first radial span and the second radial span, the first radial span, the second radial span, the first axial span and the second axial span forming a torque box.
Abstract:
Mini-disks of gas turbine engines are provided having an axially extending portion extending axially with respect to an axis of the engine, the axially extending portion configured to engage with a hub arm of a compressor of the engine, a radially extending portion extends radially with respect to the axis, the radially extending portion configured to engage with an attachment of a turbine disk of the gas turbine engine, an intermediate portion extending between the axially extending portion and the radially extending portion, and at least one mini-disk connector configured to engage with a portion of the turbine disk of the gas turbine engine to prevent radial movement of the mini-disk during operation.