METHOD AND APPARATUS FOR FORMING ELECTRODE CATALYST LAYER BY ELECTROSPRAY METHOD

    公开(公告)号:US20190341639A1

    公开(公告)日:2019-11-07

    申请号:US16515973

    申请日:2019-07-18

    Abstract: A method for forming an electrode catalyst layer by putting catalyst ink within an insulative container having a conductive nozzle in communication with the interior of the container and applying an electrospray voltage to the nozzle to cause electrospray of the catalyst ink through the tip end of the nozzle and thereby to form an electrode catalyst layer, the method includes preparing catalyst ink containing a mixture of at least electrode catalyst, polymer electrolyte binder and volatile organic compound and/or water, putting the catalyst ink within the container with a space remaining inside thereof and air-tightly sealing the container, and electrospraying with the space inside of the air-tightly sealed container being conditioned to have a negative pressure of a level at which the catalyst ink cannot drip off from the nozzle.

    Carrier metal catalyst, manufacturing method thereof, and fuel cell

    公开(公告)号:US11990627B2

    公开(公告)日:2024-05-21

    申请号:US17967180

    申请日:2022-10-17

    CPC classification number: H01M4/925 H01M8/1004

    Abstract: The carrier metal catalyst achieves suppression of internal resistance of a fuel cell. A carrier metal catalyst includes: a carrier powder; and metal fine particles supported on the carrier powder; wherein: the carrier powder is an aggregates of carrier fine particles; the carrier fine particles includes a chained portion structured by a plurality of crystallites being fusion bonded to form a chain; the carrier fine particles include titanium oxide; the carrier fine particles are doped with an element having a valence different from a valence of titanium; the titanium oxide of the carrier powder has an anatase phase/rutile phase ratio of 0.2 or lower; the metal fine particles have a mean particle size of 3 to 10 nm; the metal fine particles include platinum; and a cell resistance measured under standard conditions of a fuel cell prepared using the carrier metal catalyst is 0.090 Ωcm·2 or lower.

    Method and apparatus for forming electrode catalyst layer by electrospray method

    公开(公告)号:US11108070B2

    公开(公告)日:2021-08-31

    申请号:US16515973

    申请日:2019-07-18

    Abstract: A method for forming an electrode catalyst layer by putting catalyst ink within an insulative container having a conductive nozzle in communication with the interior of the container and applying an electrospray voltage to the nozzle to cause electrospray of the catalyst ink through the tip end of the nozzle and thereby to form an electrode catalyst layer, the method includes preparing catalyst ink containing a mixture of at least electrode catalyst, polymer electrolyte binder and volatile organic compound and/or water, putting the catalyst ink within the container with a space remaining inside thereof and air-tightly sealing the container, and electrospraying with the space inside of the air-tightly sealed container being conditioned to have a negative pressure of a level at which the catalyst ink cannot drip off from the nozzle.

    Carrier metal catalyst, manufacturing method thereof, and fuel cell

    公开(公告)号:US11502309B2

    公开(公告)日:2022-11-15

    申请号:US16774242

    申请日:2020-01-28

    Abstract: The carrier metal catalyst achieves suppression of internal resistance of a fuel cell. A carrier metal catalyst includes: a carrier powder; and metal fine particles supported on the carrier powder; wherein: the carrier powder is an aggregates of carrier fine particles; the carrier fine particles includes a chained portion structured by a plurality of crystallites being fusion bonded to form a chain; the carrier fine particles include titanium oxide; the carrier fine particles are doped with an element having a valence different from a valence of titanium; the titanium oxide of the carrier powder has an anatase phase/rutile phase ratio of 0.2 or lower; the metal fine particles have a mean particle size of 3 to 10 nm; the metal fine particles include platinum; and a cell resistance measured under standard conditions of a fuel cell prepared using the carrier metal catalyst is 0.090 Ω·cm2 or lower.

Patent Agency Ranking