Optical-readout synaptic device based on SiOxNy and preparation method thereof

    公开(公告)号:US20180277756A1

    公开(公告)日:2018-09-27

    申请号:US15989188

    申请日:2018-05-25

    Abstract: An optical-readout synaptic device based on SiOxNy and a preparation method thereof are provided. The device includes a surface plasmonic waveguide and a memristor; the surface plasmonic waveguide has a vertical three-layer structure that a second metal layer, a SiNx dielectric layer and a first metal layer are successively arranged from top to bottom; the memristor has a vertical four-layer structure that a second electrode layer, a second resistive layer, a first resistive layer and a first electrode layer are successively arranged from top to bottom; the memristor is embedded in the surface plasmonic waveguide; and, the first resistive layer and the second resistive layer of the memristor serve as an optical signal transmission channel that is horizontally connected with the SiNx dielectric layer of the surface plasmonic waveguide. The present invention realizes an optical-readout of synaptic weight and has incomparable advantages over a conventional electrical-readout synaptic device.

    Optical-readout synaptic device based on SiOxNy and preparation method thereof

    公开(公告)号:US10475996B2

    公开(公告)日:2019-11-12

    申请号:US15989188

    申请日:2018-05-25

    Abstract: An optical-readout synaptic device based on SiOxNy and a preparation method thereof are provided. The device includes a surface plasmonic waveguide and a memristor; the surface plasmonic waveguide has a vertical three-layer structure that a second metal layer, a SiNx dielectric layer and a first metal layer are successively arranged from top to bottom; the memristor has a vertical four-layer structure that a second electrode layer, a second resistive layer, a first resistive layer and a first electrode layer are successively arranged from top to bottom; the memristor is embedded in the surface plasmonic waveguide; and, the first resistive layer and the second resistive layer of the memristor serve as an optical signal transmission channel that is horizontally connected with the SiNx dielectric layer of the surface plasmonic waveguide. The present invention realizes an optical-readout of synaptic weight and has incomparable advantages over a conventional electrical-readout synaptic device.

Patent Agency Ranking