摘要:
Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.
摘要:
Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.
摘要:
Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.
摘要:
Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.
摘要:
Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.
摘要:
Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.
摘要:
A behavioral targeting system determines user profiles from online activity. The system includes a plurality of models that define parameters for determining a user profile score. Event information, which comprises on-line activity of the user, is received at an entity. To generate a user profile score, a model is selected. The model comprises recency, intensity and frequency dimension parameters. The behavioral targeting system generates a user profile score for a target objective, such as brand advertising or direct response advertising. The parameters from the model are applied to generate the user profile score in a category. The behavioral targeting system has application for use in ad serving to on-line users.
摘要:
A behavioral targeting system determines user profiles from online activity. The system includes a plurality of models that define parameters for determining a user profile score. Event information, which comprises on-line activity of the user, is received at an entity. To generate a user profile score, a model is selected. The model comprises recency, intensity and frequency dimension parameters. The behavioral targeting system generates a user profile score for a target objective, such as brand advertising or direct response advertising. The parameters from the model are applied to generate the user profile score in a category. The behavioral targeting system has application for use in ad serving to on-line users.
摘要:
A behavioral targeting system determines user profiles from online activity. The system includes a plurality of models that define parameters for determining a user profile score. Event information, which comprises on-line activity of the user, is received at an entity. To generate a user profile score, a model is selected. The model comprises recency, intensity and frequency dimension parameters. The behavioral targeting system generates a user profile score for a target objective, such as brand advertising or direct response advertising. The parameters from the model are applied to generate the user profile score in a category. The behavioral targeting system has application for use in ad serving to on-line users.
摘要:
A behavioral targeting system determines user profiles from online activity. The system includes a plurality of models that define parameters for determining a user profile score. Event information, which comprises on-line activity of the user, is received at an entity. To generate a user profile score, a model is selected. The model comprises recency, intensity and frequency dimension parameters. The behavioral targeting system generates a user profile score for a target objective, such as brand advertising or direct response advertising. The parameters from the model are applied to generate the user profile score in a category. The behavioral targeting system has application for use in ad serving to on-line users.