Collaborative-filtering contextual model optimized for an objective function for recommending items
    1.
    发明申请
    Collaborative-filtering contextual model optimized for an objective function for recommending items 有权
    针对推荐项目的目标函数优化的协同过滤上下文模型

    公开(公告)号:US20080120339A1

    公开(公告)日:2008-05-22

    申请号:US11601447

    申请日:2006-11-17

    IPC分类号: G06F17/30

    摘要: Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.

    摘要翻译: 提供了基于协同过滤的推荐系统的方法和装置。 网络用户对项目的明确和隐含的评级用于创建上下文模型。 明确的评级包括关于不同项目属性的不同评级类型。 隐性评级包括从不同用户事件导出的不同评级类型,并且可以包括新近度,强度或频率等级。 可以为特定目标函数优化上下文模型,例如点击率或转换率。 在其他实施例中,项目信息用于产生内容模型,其中用于项目的项目信息被编码为代表项目的文档中的元数据。 上下文或内容模型用于向当前用户推荐一个或多个项目。 推荐系统的基本单元可以是两个或多个项目的项目集合或两个或更多个项目的特定序列。

    Collaborative-filtering contextual model based on explicit and implicit ratings for recommending items
    2.
    发明授权
    Collaborative-filtering contextual model based on explicit and implicit ratings for recommending items 有权
    基于明确和隐含的推荐项目评级的协同过滤上下文模型

    公开(公告)号:US07590616B2

    公开(公告)日:2009-09-15

    申请号:US11601449

    申请日:2006-11-17

    IPC分类号: G06F17/30

    摘要: Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.

    摘要翻译: 提供了基于协同过滤的推荐系统的方法和装置。 网络用户对项目的明确和隐含的评级用于创建上下文模型。 明确的评级包括关于不同项目属性的不同评级类型。 隐性评级包括从不同用户事件导出的不同评级类型,并且可以包括新近度,强度或频率等级。 可以为特定目标函数优化上下文模型,例如点击率或转换率。 在其他实施例中,项目信息用于产生内容模型,其中用于项目的项目信息被编码为代表项目的文档中的元数据。 上下文或内容模型用于向当前用户推荐一个或多个项目。 推荐系统的基本单元可以是两个或多个项目的项目集合或两个或更多个项目的特定序列。

    Collaborative-filtering content model for recommending items
    3.
    发明授权
    Collaborative-filtering content model for recommending items 有权
    用于推荐项目的协作过滤内容模型

    公开(公告)号:US07584171B2

    公开(公告)日:2009-09-01

    申请号:US11601450

    申请日:2006-11-17

    IPC分类号: G06F17/30

    摘要: Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.

    摘要翻译: 提供了基于协同过滤的推荐系统的方法和装置。 网络用户对项目的明确和隐含的评级用于创建上下文模型。 明确的评级包括关于不同项目属性的不同评级类型。 隐性评级包括从不同用户事件导出的不同评级类型,并且可以包括新近度,强度或频率等级。 可以为特定目标函数优化上下文模型,例如点击率或转换率。 在其他实施例中,项目信息用于产生内容模型,其中用于项目的项目信息被编码为代表项目的文档中的元数据。 上下文或内容模型用于向当前用户推荐一个或多个项目。 推荐系统的基本单元可以是两个或多个项目的项目集合或两个或更多个项目的特定序列。

    Collaborative-filtering contextual model optimized for an objective function for recommending items
    4.
    发明授权
    Collaborative-filtering contextual model optimized for an objective function for recommending items 有权
    针对推荐项目的目标函数优化的协同过滤上下文模型

    公开(公告)号:US07574422B2

    公开(公告)日:2009-08-11

    申请号:US11601447

    申请日:2006-11-17

    IPC分类号: G06F17/30

    摘要: Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.

    摘要翻译: 提供了基于协同过滤的推荐系统的方法和装置。 网络用户对项目的明确和隐含的评级用于创建上下文模型。 明确的评级包括关于不同项目属性的不同评级类型。 隐性评级包括从不同用户事件导出的不同评级类型,并且可以包括新近度,强度或频率等级。 可以为特定目标函数优化上下文模型,例如点击率或转换率。 在其他实施例中,项目信息用于产生内容模型,其中用于项目的项目信息被编码为代表项目的文档中的元数据。 上下文或内容模型用于向当前用户推荐一个或多个项目。 推荐系统的基本单元可以是两个或多个项目的项目集合或两个或更多个项目的特定序列。

    Collaborative-filtering content model for recommending items
    5.
    发明申请
    Collaborative-filtering content model for recommending items 有权
    用于推荐项目的协作过滤内容模型

    公开(公告)号:US20080120288A1

    公开(公告)日:2008-05-22

    申请号:US11601450

    申请日:2006-11-17

    IPC分类号: G06F17/30

    摘要: Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.

    摘要翻译: 提供了基于协同过滤的推荐系统的方法和装置。 网络用户对项目的明确和隐含的评级用于创建上下文模型。 明确的评级包括关于不同项目属性的不同评级类型。 隐性评级包括从不同用户事件导出的不同评级类型,并且可以包括新近度,强度或频率等级。 可以为特定目标函数优化上下文模型,例如点击率或转换率。 在其他实施例中,项目信息用于产生内容模型,其中用于项目的项目信息被编码为代表项目的文档中的元数据。 上下文或内容模型用于向当前用户推荐一个或多个项目。 推荐系统的基本单元可以是两个或多个项目的项目集合或两个或更多个项目的特定序列。

    Collaborative-filtering contextual model based on explicit and implicit ratings for recommending items
    6.
    发明申请
    Collaborative-filtering contextual model based on explicit and implicit ratings for recommending items 有权
    基于明确和隐含的推荐项目评级的协同过滤上下文模型

    公开(公告)号:US20080120287A1

    公开(公告)日:2008-05-22

    申请号:US11601449

    申请日:2006-11-17

    IPC分类号: G06F17/30

    摘要: Methods and apparatus for a recommendation system based on collaborative filtering is provided. Explicit and implicit ratings of items by network users are used to create a contextual model. The explicit ratings comprise different rating types regarding different item attributes. The implicit ratings comprise different rating types derived from different user events and may include recency, intensity, or frequency ratings. The contextual model may be optimized for a specific objective function, such as click-through-rate or conversion rate. In other embodiments, item information is used to produce a content model where item information for an item is encoded as metadata into a document that represents the item. The contextual or content model is used to recommend one or more items to a current user. The basic unit of the recommendation system may be an item set of two or more items or a particular sequence of two or more items.

    摘要翻译: 提供了基于协同过滤的推荐系统的方法和装置。 网络用户对项目的明确和隐含的评级用于创建上下文模型。 明确的评级包括关于不同项目属性的不同评级类型。 隐性评级包括从不同用户事件导出的不同评级类型,并且可以包括新近度,强度或频率等级。 可以为特定目标函数优化上下文模型,例如点击率或转换率。 在其他实施例中,项目信息用于产生内容模型,其中用于项目的项目信息被编码为代表项目的文档中的元数据。 上下文或内容模型用于向当前用户推荐一个或多个项目。 推荐系统的基本单元可以是两个或多个项目的项目集合或两个或更多个项目的特定序列。

    Incremental update of long-term and short-term user profile scores in a behavioral targeting system
    7.
    发明授权
    Incremental update of long-term and short-term user profile scores in a behavioral targeting system 有权
    在行为定位系统中增加长期和短期用户配置文件分数

    公开(公告)号:US07904448B2

    公开(公告)日:2011-03-08

    申请号:US11394358

    申请日:2006-03-29

    IPC分类号: G06F7/00

    CPC分类号: G06Q30/02

    摘要: A behavioral targeting system determines user profiles from online activity. The system includes a plurality of models that define parameters for determining a user profile score. Event information, which comprises on-line activity of the user, is received at an entity. To generate a user profile score, a model is selected. The model comprises recency, intensity and frequency dimension parameters. The behavioral targeting system generates a user profile score for a target objective, such as brand advertising or direct response advertising. The parameters from the model are applied to generate the user profile score in a category. The behavioral targeting system has application for use in ad serving to on-line users.

    摘要翻译: 行为定位系统从在线活动确定用户个人资料。 该系统包括多个模型,其定义用于确定用户简档分数的参数。 事件信息,包括用户的在线活动,在一个实体被接收。 要生成用户配置文件分数,选择一个模型。 该模型包括新近度,强度和频率尺寸参数。 行为定位系统为目标目标生成用户简档分数,例如品牌广告或直接响应广告。 应用来自模型的参数以在类别中生成用户简档分数。 行为定位系统具有在在线用户的广告投放中使用的应用。

    Behavioral targeting system
    9.
    发明授权
    Behavioral targeting system 有权
    行为定位系统

    公开(公告)号:US08504575B2

    公开(公告)日:2013-08-06

    申请号:US11394343

    申请日:2006-03-29

    IPC分类号: G06F17/30

    摘要: A behavioral targeting system determines user profiles from online activity. The system includes a plurality of models that define parameters for determining a user profile score. Event information, which comprises on-line activity of the user, is received at an entity. To generate a user profile score, a model is selected. The model comprises recency, intensity and frequency dimension parameters. The behavioral targeting system generates a user profile score for a target objective, such as brand advertising or direct response advertising. The parameters from the model are applied to generate the user profile score in a category. The behavioral targeting system has application for use in ad serving to on-line users.

    摘要翻译: 行为定位系统从在线活动确定用户个人资料。 该系统包括多个模型,其定义用于确定用户简档分数的参数。 事件信息,包括用户的在线活动,在一个实体被接收。 要生成用户配置文件分数,选择一个模型。 该模型包括新近度,强度和频率尺寸参数。 行为定位系统为目标目标生成用户简档分数,例如品牌广告或直接响应广告。 应用来自模型的参数以在类别中生成用户简档分数。 行为定位系统具有在在线用户的广告投放中使用的应用。

    Incremental Update Of Long-Term And Short-Term User Profile Scores In A Behavioral Targeting System
    10.
    发明申请
    Incremental Update Of Long-Term And Short-Term User Profile Scores In A Behavioral Targeting System 审中-公开
    长期和短期用户配置文件在行为定位系统中的增量更新

    公开(公告)号:US20110161331A1

    公开(公告)日:2011-06-30

    申请号:US13010605

    申请日:2011-01-20

    IPC分类号: G06F17/30

    CPC分类号: G06Q30/02

    摘要: A behavioral targeting system determines user profiles from online activity. The system includes a plurality of models that define parameters for determining a user profile score. Event information, which comprises on-line activity of the user, is received at an entity. To generate a user profile score, a model is selected. The model comprises recency, intensity and frequency dimension parameters. The behavioral targeting system generates a user profile score for a target objective, such as brand advertising or direct response advertising. The parameters from the model are applied to generate the user profile score in a category. The behavioral targeting system has application for use in ad serving to on-line users.

    摘要翻译: 行为定位系统从在线活动确定用户个人资料。 该系统包括多个模型,其定义用于确定用户简档分数的参数。 事件信息,包括用户的在线活动,在一个实体被接收。 要生成用户配置文件分数,选择一个模型。 该模型包括近似度,强度和频率尺寸参数。 行为定位系统为目标目标生成用户简档分数,例如品牌广告或直接响应广告。 应用来自模型的参数以在类别中生成用户简档分数。 行为定位系统具有在在线用户的广告投放中使用的应用。