Abstract:
A method of detecting the presence of a prostate cancer in a human subject comprising the steps of (a) obtaining a histologically normal prostate tissue sample from the patient and (b) quantifying the epithelial thickness or gland lumen roundness of the tissue, wherein an increase in epithelial thickness or a decrease in gland lumen roundness indicates the presence of prostate cancer or a prostate cancer field defect.
Abstract:
A method of detecting the presence of a prostate cancer field defect in a human subject comprising the step of (a) obtaining genomic DNA from the human subject and (b) quantitating methylation in at least one target region selected from the group consisting of CAV1, EVX1, MCF2L, FGF1, NCR2 and WNT2 and EXT1 and SPAG4 target, wherein significant methylation changes indicate the presence of prostate cancer or a prostate cancer field defect, wherein the change is relative to tissue from a second human subject who does not have prostate cancer.
Abstract:
A method of detecting the presence of a prostate cancer in a human subject comprising the steps of (a) obtaining a histologically normal prostate tissue sample from the patient and (b) quantifying the epithelial thickness or gland lumen roundness of the tissue, wherein an increase in epithelial thickness or a decrease in gland lumen roundness indicates the presence of prostate cancer or a prostate cancer field defect.
Abstract:
A method of detecting the presence of a prostate cancer field defect in a human subject comprising the step of (a) obtaining genomic DNA from the human subject and (b) quantitating methylation in at least one target region selected from the group consisting of PLA2G16, CAV1, EVX1, MCF2L, FGF1, NCR2 and WNT2 and EXT1 and SPAG4 target, wherein significant methylation changes indicate the presence of prostate cancer or a prostate cancer field defect, wherein the change is relative to tissue from a second human subject who does not have prostate cancer.
Abstract:
A method of detecting the presence of a prostate cancer field defect in a human subject comprising the step of (a) obtaining genomic DNA from the human subject and (b) quantitating methylation in at least one target region selected from the group consisting of CAV1, EVX1, MCF2L, FGF1, NCR2 and WNT2 and EXT1 and SPAG4 target, wherein significant methylation changes indicate the presence of prostate cancer or a prostate cancer field defect, wherein the change is relative to tissue from a second human subject who does not have prostate cancer.
Abstract:
A method of detecting the presence of a prostate cancer field defect in a human subject. The method includes (a) obtaining genomic DNA from the human subject and (b) determining methylation status in at least one target region selected from the group consisting of PLA2G16, CAV1, EVX1, MCF2L, FGF1, NCR2, WNT2, EXT1, and SPAG4, wherein methylation changes indicate the presence of prostate cancer or a prostate cancer field defect, wherein the change is relative to tissue from a second human subject who does not have prostate cancer.
Abstract:
A method of detecting the presence of a prostate cancer field defect in a human subject comprising the step of (a) obtaining genomic DNA from the human subject and (b) quantitating methylation in at least one target region selected from the group consisting of CAV1, EVX1, MCF2L, FGF1, NCR2 and WNT2 and EXT1 and SPAG4 target, wherein significant methylation changes indicate the presence of prostate cancer or a prostate cancer field defect, wherein the change is relative to tissue from a second human subject who does not have prostate cancer.
Abstract:
A method of detecting the presence of a prostate cancer field defect in a human subject comprising the step of (a) obtaining genomic DNA from the human subject and (b) quantitating methylation in at least one target region selected from the group consisting of CAV1, EVX1, MCF2L, FGF1, NCR2 and WNT2 and EXT1 and SPAG4 target, wherein significant methylation changes indicate the presence of prostate cancer or a prostate cancer field defect, wherein the change is relative to tissue from a second human subject who does not have prostate cancer.
Abstract:
A method of detecting the presence of a prostate cancer in a human subject comprising the steps of (a) obtaining a histologically normal prostate tissue sample from the patient and (b) quantifying the epithelial percentage of the tissue, wherein an epithelial percentage greater than 39% indicates the presence of prostate cancer or a prostate cancer field defect.
Abstract:
A method of detecting the presence of a prostate cancer field defect in a human subject. The method includes (a) obtaining genomic DNA from the human subject and (b) determining methylation status in at least one target region selected from the group consisting of PLA2G16, CAV1, EVX1, MCF2L, FGF1, NCR2, WNT2, EXT1, and SPAG4, wherein methylation changes indicate the presence of prostate cancer or a prostate cancer field defect, wherein the change is relative to tissue from a second human subject who does not have prostate cancer.