System and method for detection of multi-view/multi-pose objects
    2.
    发明申请
    System and method for detection of multi-view/multi-pose objects 有权
    用于检测多视点/多姿态对象的系统和方法

    公开(公告)号:US20120002869A1

    公开(公告)日:2012-01-05

    申请号:US13134885

    申请日:2011-06-20

    IPC分类号: G06K9/62

    CPC分类号: G06K9/6256

    摘要: The present invention provides a computer implemented process for detecting multi-view multi-pose objects. The process comprises training of a classifier for each intra-class exemplar, training of a strong classifier and combining the individual exemplar-based classifiers with a single objective function. This function is optimized using the two nested AdaBoost loops. The first loop is the outer loop that selects discriminative candidate exemplars. The second loop, the inner loop selects the discriminative candidate features on the selected exemplars to compute all weak classifiers for a specific position such as a view/pose. Then all the computed weak classifiers are automatically combined into a final classifier (strong classifier) which is the object to be detected.

    摘要翻译: 本发明提供了一种用于检测多视点多姿态对象的计算机实现过程。 该过程包括针对每个类内样本的分类器的训练,强分类器的训练和将单个基于样本的分类器与单个目标函数组合。 使用两个嵌套的AdaBoost循环来优化此功能。 第一个循环是选择区分候选样本的外循环。 第二个循环,内循环选择所选样本上的鉴别候选特征,以计算特定位置(例如视图/姿态)的所有弱分类器。 然后将所有计算的弱分类器自动组合成最终分类器(强分类器),该分类器是要检测的对象。

    System and method for detection of multi-view/multi-pose objects
    3.
    发明授权
    System and method for detection of multi-view/multi-pose objects 有权
    用于检测多视点/多姿态对象的系统和方法

    公开(公告)号:US08391592B2

    公开(公告)日:2013-03-05

    申请号:US13134885

    申请日:2011-06-20

    IPC分类号: G06K9/62

    CPC分类号: G06K9/6256

    摘要: The present invention provides a computer implemented process for detecting multi-view multi-pose objects. The process comprises training of a classifier for each intra-class exemplar, training of a strong classifier and combining the individual exemplar-based classifiers with a single objective function. This function is optimized using the two nested AdaBoost loops. The first loop is the outer loop that selects discriminative candidate exemplars. The second loop, the inner loop selects the discriminative candidate features on the selected exemplars to compute all weak classifiers for a specific position such as a view/pose. Then all the computed weak classifiers are automatically combined into a final classifier (strong classifier) which is the object to be detected.

    摘要翻译: 本发明提供了一种用于检测多视点多姿态对象的计算机实现过程。 该过程包括针对每个类内样本的分类器的训练,强分类器的训练和将单个基于样本的分类器与单个目标函数组合。 使用两个嵌套的AdaBoost循环来优化此功能。 第一个循环是选择区分候选样本的外循环。 第二个循环,内循环选择所选样本上的鉴别候选特征,以计算特定位置(例如视图/姿态)的所有弱分类器。 然后将所有计算的弱分类器自动组合成最终分类器(强分类器),该分类器是要检测的对象。

    System and method for detection of multi-view/multi-pose objects
    4.
    发明授权
    System and method for detection of multi-view/multi-pose objects 有权
    用于检测多视点/多姿态对象的系统和方法

    公开(公告)号:US07965886B2

    公开(公告)日:2011-06-21

    申请号:US11762400

    申请日:2007-06-13

    IPC分类号: G06K9/62

    CPC分类号: G06K9/6256

    摘要: The present invention provides a computer implemented process for detecting multi-view multi-pose objects. The process comprises training of a classifier for each intra-class exemplar, training of a strong classifier and combining the individual exemplar-based classifiers with a single objective function. This function is optimized using the two nested AdaBoost loops. The first loop is the outer loop that selects discriminative candidate exemplars. The second loop, the inner loop selects the discriminative candidate features on the selected exemplars to compute all weak classifiers for a specific position such as a view/pose. Then all the computed weak classifiers are automatically combined into a final classifier (strong classifier) which is the object to be detected.

    摘要翻译: 本发明提供了一种用于检测多视点多姿态对象的计算机实现过程。 该过程包括针对每个类内样本的分类器的训练,强分类器的训练和将单个基于样本的分类器与单个目标函数组合。 使用两个嵌套的AdaBoost循环来优化此功能。 第一个循环是选择区分候选样本的外循环。 第二个循环,内循环选择所选样本上的鉴别候选特征,以计算特定位置(例如视图/姿态)的所有弱分类器。 然后将所有计算的弱分类器自动组合成最终分类器(强分类器),该分类器是要检测的对象。

    Method and apparatus for tracking a movable object
    5.
    发明授权
    Method and apparatus for tracking a movable object 有权
    用于跟踪可移动物体的方法和装置

    公开(公告)号:US07929728B2

    公开(公告)日:2011-04-19

    申请号:US11295688

    申请日:2005-12-05

    IPC分类号: G06K9/00

    摘要: A method and apparatus for tracking a movable object using a plurality of images, each of which is separated by an interval of time is disclosed. The plurality of images includes first and second images. The method and apparatus include elements for aligning the first and second images as a function of (i) at least one feature of a first movable object captured in the first image, and (ii) at least one feature of a second movable object captured in the second image; and after aligning the first and second images, comparing at least one portion of the first image with at least one portion of the second image.

    摘要翻译: 公开了一种使用多个图像跟踪可移动物体的方法和装置,每个图像间隔一段时间。 多个图像包括第一和第二图像。 所述方法和装置包括用于将第一和第二图像对准的元件作为(i)在第一图像中捕获的第一可移动物体的至少一个特征的功能,以及(ii)捕获在第一图像中的第二可移动物体的至少一个特征 第二个图像; 并且在对准所述第一和第二图像之后,将所述第一图像的至少一部分与所述第二图像的至少一部分进行比较。

    Method and apparatus for unsupervised learning of discriminative edge measures for vehicle matching between non-overlapping cameras
    6.
    发明授权
    Method and apparatus for unsupervised learning of discriminative edge measures for vehicle matching between non-overlapping cameras 有权
    用于非重叠摄像机之间的车辆匹配的鉴别边缘测量的无监督学习的方法和装置

    公开(公告)号:US07650030B2

    公开(公告)日:2010-01-19

    申请号:US11295143

    申请日:2005-12-05

    IPC分类号: G06K9/62

    摘要: A method and apparatus for unsupervised learning of measures for matching objects between images from at least two non-overlapping cameras is disclosed The method includes collecting at least two pairs of feature maps, where the at least two pairs of feature maps are derived from features of objects captured in the images. The method further includes computing, as a function of at least two pairs of feature maps, at least one first and second match measures, wherein the first match measure is of a same class and the second match measure is of a different class.

    摘要翻译: 公开了一种用于无人监督学习用于在来自至少两个非重叠相机的图像之间匹配对象的措施的方法和装置。所述方法包括收集至少两对特征图,其中所述至少两对特征图从 在图像中捕获的对象。 该方法还包括作为至少两对特征图的函数来计算至少一个第一匹配度量和第二匹配度量,其中所述第一匹配度量具有相同类别,并且所述第二匹配度量是不同类别的。

    SYSTEM AND METHOD FOR DETECTING STILL OBJECTS IN IMAGES
    7.
    发明申请
    SYSTEM AND METHOD FOR DETECTING STILL OBJECTS IN IMAGES 有权
    用于检测图像中的静态对象的系统和方法

    公开(公告)号:US20080025568A1

    公开(公告)日:2008-01-31

    申请号:US11780109

    申请日:2007-07-19

    IPC分类号: G06K9/00

    CPC分类号: G06K9/4642

    摘要: The present invention provides an improved system and method for object detection with histogram of oriented gradient (HOG) based support vector machine (SVM). Specifically, the system provides a computational framework to stably detect still or not moving objects over a wide range of viewpoints. The framework includes providing a sensor input of images which are received by the “focus of attention” mechanism to identify the regions in the image that potentially contain the target objects. These regions are further computed to generate hypothesized objects, specifically generating selected regions containing the target object hypothesis with respect to their positions. Thereafter, these selected regions are verified by an extended HOG-based SVM classifier to generate the detected objects.

    摘要翻译: 本发明提供一种用于基于定向梯度(HOG)的支持向量机(SVM)直方图的物体检测的改进的系统和方法。 具体地,该系统提供了一个计算框架,用于在宽范围的视点中稳定地检测静止或不移动的物体。 框架包括提供通过“注意力”机制接收的图像的传感器输入,以识别可能包含目标对象的图像中的区域。 进一步计算这些区域以产生假设对象,特别地生成包含关于其位置的目标对象假设的选定区域。 此后,通过扩展的基于HOG的SVM分类器验证这些选择的区域以生成检测到的对象。

    System and method for detecting still objects in images
    8.
    发明授权
    System and method for detecting still objects in images 有权
    用于检测图像中静止物体的系统和方法

    公开(公告)号:US07853072B2

    公开(公告)日:2010-12-14

    申请号:US11780109

    申请日:2007-07-19

    IPC分类号: G06K9/62

    CPC分类号: G06K9/4642

    摘要: The present invention provides an improved system and method for object detection with histogram of oriented gradient (HOG) based support vector machine (SVM). Specifically, the system provides a computational framework to stably detect still or not moving objects over a wide range of viewpoints. The framework includes providing a sensor input of images which are received by the “focus of attention” mechanism to identify the regions in the image that potentially contain the target objects. These regions are further computed to generate hypothesized objects, specifically generating selected regions containing the target object hypothesis with respect to their positions. Thereafter, these selected regions are verified by an extended HOG-based SVM classifier to generate the detected objects.

    摘要翻译: 本发明提供一种用于基于定向梯度(HOG)的支持向量机(SVM)直方图的物体检测的改进的系统和方法。 具体地,该系统提供了一个计算框架,用于在宽范围的视点中稳定地检测静止或不移动的物体。 框架包括提供通过“注意力”机制接收的图像的传感器输入,以识别可能包含目标对象的图像中的区域。 进一步计算这些区域以产生假设对象,特别地生成包含关于其位置的目标对象假设的选定区域。 此后,通过扩展的基于HOG的SVM分类器验证这些选择的区域以生成检测到的对象。

    SYSTEM AND METHOD FOR DETECTION OF MULTI-VIEW/MULTI-POSE OBJECTS
    9.
    发明申请
    SYSTEM AND METHOD FOR DETECTION OF MULTI-VIEW/MULTI-POSE OBJECTS 有权
    用于检测多视图/多位置对象的系统和方法

    公开(公告)号:US20080089579A1

    公开(公告)日:2008-04-17

    申请号:US11762400

    申请日:2007-06-13

    IPC分类号: G06K9/62

    CPC分类号: G06K9/6256

    摘要: The present invention provides a computer implemented process for detecting multi-view multi-pose objects. The process comprises training of a classifier for each intra-class exemplar, training of a strong classifier and combining the individual exemplar-based classifiers with a single objective function. This function is optimized using the two nested AdaBoost loops. The first loop is the outer loop that selects discriminative candidate exemplars. The second loop, the inner loop selects the discriminative candidate features on the selected exemplars to compute all weak classifiers for a specific position such as a view/pose. Then all the computed weak classifiers are automatically combined into a final classifier (strong classifier) which is the object to be detected.

    摘要翻译: 本发明提供了一种用于检测多视点多姿态对象的计算机实现过程。 该过程包括针对每个类内样本的分类器的训练,强分类器的训练和将单个基于样本的分类器与单个目标函数组合。 使用两个嵌套的AdaBoost循环来优化此功能。 第一个循环是选择区分候选样本的外循环。 第二个循环,内循环选择所选样本上的鉴别候选特征,以计算特定位置(例如视图/姿态)的所有弱分类器。 然后将所有计算的弱分类器自动组合成最终分类器(强分类器),该分类器是要检测的对象。

    Method and apparatus for tracking a movable object
    10.
    发明申请
    Method and apparatus for tracking a movable object 有权
    用于跟踪可移动物体的方法和装置

    公开(公告)号:US20060204035A1

    公开(公告)日:2006-09-14

    申请号:US11295688

    申请日:2005-12-05

    IPC分类号: G06K9/00 H04N5/225

    摘要: A method and apparatus for tracking a movable object using a plurality of images, each of which is separated by an interval of time is disclosed. The plurality of images includes first and second images. The method and apparatus include elements for aligning the first and second images as a function of (i) at least one feature of a first movable object captured in the first image, and (ii) at least one feature of a second movable object captured in the second image; and after aligning the first and second images, comparing at least one portion of the first image with at least one portion of the second image.

    摘要翻译: 公开了一种使用多个图像跟踪可移动物体的方法和装置,每个图像间隔一段时间。 多个图像包括第一和第二图像。 所述方法和装置包括用于将第一和第二图像对准的元件作为(i)在第一图像中捕获的第一可移动物体的至少一个特征的功能,以及(ii)捕获在第一图像中的第二可移动物体的至少一个特征 第二个图像; 并且在对准所述第一和第二图像之后,将所述第一图像的至少一部分与所述第二图像的至少一部分进行比较。