摘要:
The present invention provides an improved system and method for object detection with histogram of oriented gradient (HOG) based support vector machine (SVM). Specifically, the system provides a computational framework to stably detect still or not moving objects over a wide range of viewpoints. The framework includes providing a sensor input of images which are received by the “focus of attention” mechanism to identify the regions in the image that potentially contain the target objects. These regions are further computed to generate hypothesized objects, specifically generating selected regions containing the target object hypothesis with respect to their positions. Thereafter, these selected regions are verified by an extended HOG-based SVM classifier to generate the detected objects.
摘要:
The present invention provides an improved system and method for object detection with histogram of oriented gradient (HOG) based support vector machine (SVM). Specifically, the system provides a computational framework to stably detect still or not moving objects over a wide range of viewpoints. The framework includes providing a sensor input of images which are received by the “focus of attention” mechanism to identify the regions in the image that potentially contain the target objects. These regions are further computed to generate hypothesized objects, specifically generating selected regions containing the target object hypothesis with respect to their positions. Thereafter, these selected regions are verified by an extended HOG-based SVM classifier to generate the detected objects.
摘要:
The present invention provides a computer implemented process for detecting multi-view multi-pose objects. The process comprises training of a classifier for each intra-class exemplar, training of a strong classifier and combining the individual exemplar-based classifiers with a single objective function. This function is optimized using the two nested AdaBoost loops. The first loop is the outer loop that selects discriminative candidate exemplars. The second loop, the inner loop selects the discriminative candidate features on the selected exemplars to compute all weak classifiers for a specific position such as a view/pose. Then all the computed weak classifiers are automatically combined into a final classifier (strong classifier) which is the object to be detected.
摘要:
The present invention provides a computer implemented process for detecting multi-view multi-pose objects. The process comprises training of a classifier for each intra-class exemplar, training of a strong classifier and combining the individual exemplar-based classifiers with a single objective function. This function is optimized using the two nested AdaBoost loops. The first loop is the outer loop that selects discriminative candidate exemplars. The second loop, the inner loop selects the discriminative candidate features on the selected exemplars to compute all weak classifiers for a specific position such as a view/pose. Then all the computed weak classifiers are automatically combined into a final classifier (strong classifier) which is the object to be detected.
摘要:
The present invention provides a computer implemented process for detecting multi-view multi-pose objects. The process comprises training of a classifier for each intra-class exemplar, training of a strong classifier and combining the individual exemplar-based classifiers with a single objective function. This function is optimized using the two nested AdaBoost loops. The first loop is the outer loop that selects discriminative candidate exemplars. The second loop, the inner loop selects the discriminative candidate features on the selected exemplars to compute all weak classifiers for a specific position such as a view/pose. Then all the computed weak classifiers are automatically combined into a final classifier (strong classifier) which is the object to be detected.
摘要:
The present invention provides a computer implemented process for detecting multi-view multi-pose objects. The process comprises training of a classifier for each intra-class exemplar, training of a strong classifier and combining the individual exemplar-based classifiers with a single objective function. This function is optimized using the two nested AdaBoost loops. The first loop is the outer loop that selects discriminative candidate exemplars. The second loop, the inner loop selects the discriminative candidate features on the selected exemplars to compute all weak classifiers for a specific position such as a view/pose. Then all the computed weak classifiers are automatically combined into a final classifier (strong classifier) which is the object to be detected.
摘要:
A method for detecting a moving target is disclosed that receives a plurality of images from at least one camera; receives a measurement of scale from one of a measurement device and a second camera; calculates the pose of the at least one camera over time based on the plurality of images and the measurement of scale; selects a reference image and an inspection image from the plurality of images of the at least one camera; and detects a moving target from the reference image and the inspection image based on the orientation of corresponding portions in the reference image and the inspection image relative to a location of an epipolar direction common to the reference image and the inspection image; and displays any detected moving target on a display. The measurement of scale can derived from a second camera or, for example, a wheel odometer. The method can also detect moving targets by combining the above epipolar method with a method based on changes in depth between the inspection image and the reference image and based on changes in flow between the inspection image and the reference image.
摘要:
The present invention relates to a system and method for detecting one or more targets belonging to a first class (e.g., moving and/or stationary people), from a moving platform in a 3D-rich environment. The framework described here is implemented using a number of monocular or stereo cameras distributed around the vehicle to provide 360 degrees coverage. Furthermore, the framework described here utilizes numerous filters to reduce the number of false positive identifications of the targets.
摘要:
A method for determining whether a target vehicle in front of a host vehicle intends to change lanes using radar data and image data is disclosed, comprising the steps of processing the image data to detect the boundaries of the lane of the host vehicle; estimating a ground plane by determining a projected vanishing point of the detected lane boundaries; using a camera projection matrix to map the target vehicle from the radar data to image coordinates; and determining lane change intentions of the target vehicle based on a moving trajectory and an appearance change of the target vehicle. Determining lane change intentions based on a moving trajectory of the target vehicle is based on vehicle motion trajectory relative to the center of the lane such that the relative distance of the target vehicle from the center of the lane follows a predetermined trend. Determining lane change intentions based on an appearance change of the target vehicle is based on a template that tracks changes to the appearance of the rear part of the target vehicle due to rotation.
摘要:
A method for detecting a moving target is disclosed that receives a plurality of images from at least one camera; receives a measurement of scale from one of a measurement device and a second camera; calculates the pose of the at least one camera over time based on the plurality of images and the measurement of scale; selects a reference image and an inspection image from the plurality of images of the at least one camera; and detects a moving target from the reference image and the inspection image based on the orientation of corresponding portions in the reference image and the inspection image relative to a location of an epipolar direction common to the reference image and the inspection image; and displays any detected moving target on a display. The measurement of scale can derived from a second camera or, for example, a wheel odometer. The method can also detect moving targets by combining the above epipolar method with a method based on changes in depth between the inspection image and the reference image and based on changes in flow between the inspection image and the reference image.