Abstract:
Provided is an apparatus and method for iteratively detecting and decoding a received signal in a wireless communication system. An apparatus for iterative detection and decoding (IDD) in a wireless communication system may determine a predetermined group to be updated in a first soft decision sequence, may transmit detection control information of the determined group, and may generate a second soft decision sequence based on a detection operation result of a predetermined received signal portion that is extracted based on the detection control information.
Abstract:
A method and an apparatus for managing a broadcast for a portable terminal receiving supplementary information related to the broadcast are provided. The method includes tuning a broadcasting receiver of the portable terminal to a frequency from among a plurality of frequencies of a broadcasting channel, receiving, by the broadcasting receiver, a broadcasting signal on the tuned frequency, determining whether a moving speed of the portable terminal is equal to or more than a predetermined speed when a broadcasting receiver is tuned to the frequency and is receiving a broadcasting signal, measuring a field strength of the received broadcasting signal when the moving speed of the portable terminal is equal to or greater than the predetermined speed, and controlling the broadcasting receiver to be tuned to another frequency in order to receive the broadcasting signal of the broadcasting channel when the measured field strength is less than a predetermined threshold.
Abstract:
A diagnostic ultrasound system may visualize and display a mechanical index (MI) as a map. The diagnostic ultrasound system may include a calculating unit to calculate an MI at a depth value on an ultrasonic direction axis from an ultrasonic output unit of an ultrasonic transducer, a visualizing unit to visualize a relationship between the calculated MI and the corresponding depth value in the form of a graph to generate an MI map, and a display unit to display the MI map.
Abstract:
Disclosed is an effective high-speed encoding method using a parity-check matrix proposed in an IEEE 802.1x standard for high-speed low-density parity-check encoding. In the prior art, encoding was performed by blocking and dividing the parity-check matrix of the LDPC code and through relevant matrix equations, or encoding was performed by an encoding apparatus that divides a matrix multiplication operation of a generated matrix acquired by using an arbitrary parity-check matrix of a quasi-cyclic (QC) LDPC code and information vectors into two sequential steps and implements each step as a cyclic shift-register. Unlike the prior art, the present invention provides an effective high-speed encoding method having low additional complexity by using a quasi-cyclic characteristic of a parity-check matrix as well as an encoding method through generation of a temporary parity bit, generation of a correction bit, and correction of a parity bit by using the parity-check matrix having a dual-diagonal parity structure proposed in the standard.