摘要:
An optical gain fiber of the present invention is doped with rare earth ions for improving a gain efficiency of a certain transition of the rare earth ions by inhibiting an undesirable amplified spontaneous emission. The optical gain fiber for amplifying an optical signal, includes a core doped with a first rare-earth ion in a portion thereof for amplifying the optical signal, and a clad doped with a second rare earth ion for absorbing an undesirable amplified spontaneous emission (ASE) emitted from the first rare earth ion, wherein the portion of the core and the potion of the clad are separated by the remaining portions of the core and the clad.
摘要:
Glasses of the present invention are tellurite and oxyhalide glasses doped with rare-earth ion, which can be applied to highly efficient optical amplifiers and lasers for optical communication. They are thermally and chemically stable during and after the fabrication processes of the optical fiber. The glass material includes 20˜70 mole % of TeO2, a heavy metal oxide, 0.001˜10 mole % of a rare earth ion dopant, 5˜30 mole % of MO, M being selected from a group consisting of Mg, Ca, Sr, Ba, Zn and Pb, and optionally 1˜20 mole % of R2O, R being selected from a group consisting of Li, Na, K, Rb and Cs. In the composition of the glass, 3˜18 mole % of MO and R2O may be substituted by the metal halides. The glasses of the present invention are similar in phonon energy to the conventional tellurite glasses not to increase the non-radiative transition rate. Further, the fluorescence lifetime is additionally increased in case of partial substitution of oxide to halide.
摘要:
The present invention relates to the fabrication of an optical device; and, more particularly to an electrode for fabricating periodically poled optical fibers and a fabrication method of periodically poled optical fibers using the electrode. To fabricate periodically poled optical fibers for improving the effect of three wave mixing in accordance with the second-order nonlinear optical phenomenon, the periodically poled optical fibers of the present invention is formed by using one or more electrodes with holes or grooves for a period satisfying the quasi phase matching condition between light waves in use. Also, using the electrodes described above, one or more holes or one or more grooves are formed on the surface of the optical fiber around the core in its length direction, and thereby make an optical fiber poled periodically.
摘要:
A high-speed wavelength channel selector has properties of relatively easy manufacturing and easy extension to multi-channel integration, and a high-speed space and wavelength multiplexed channel selector uses the high-speed wavelength channel selector. The high-speed wavelength channel selector is integrated with electro-optic waveguide switches of non-crystalline materials, such as electro-optic polymers or glasses, in the middle of a pair of wavelength multiplexer and demultiplexer and the high-speed space and wavelength multiplexed channel selector has the photonic integrated circuit-type composition of a space multiplexed channel selector containing M electro-optic waveguide switches and an M×1 channel combiner, the high-speed wavelength channel selector, optical amplifier and a high-speed wavelength converter.
摘要:
Provided is an organic electroluminescence device. The organic electroluminescence device includes: a first device including a first substrate, a first electrode, a first organic light emitting layer and a second electrode, the first electrode, the first organic light emitting layer and the second electrode being sequentially stacked on the first substrate; a second device facing the first device and including a second substrate, a third electrode, a second organic light emitting layer and a fourth electrode, the third electrode, the second organic light emitting layer and the fourth electrode being sequentially stacked on the second substrate; and a bonding layer bonding the first device with the second device, wherein one of lights emitted from the first and second organic light emitting layers resonates in one of the first device or the second device.
摘要:
Provided is an organic electroluminescence device. The organic electroluminescence device includes: a first device including a first substrate, a first electrode, a first organic light emitting layer and a second electrode, the first electrode, the first organic light emitting layer and the second electrode being sequentially stacked on the first substrate; a second device facing the first device and including a second substrate, a third electrode, a second organic light emitting layer and a fourth electrode, the third electrode, the second organic light emitting layer and the fourth electrode being sequentially stacked on the second substrate; and a bonding layer bonding the first device with the second device, wherein one of lights emitted from the first and second organic light emitting layers resonates in one of the first device or the second device.
摘要:
Provided is a method of fabricating an organic light emitting diode. The method may include preparing a substrate, forming a textured portion on the substrate, the textured portion including protruding patterns randomly and irregularly arranged on the substrate, forming a planarization layer on the substrate to planarize the substrate formed with the textured portion, forming a first electrode on the planarization layer, forming an organic light emitting layer on the first electrode, and forming a second electrode on the organic light emitting layer.
摘要:
The inventive concept provides light emitting devices and methods of manufacturing a light emitting device. The light emitting device may include a transparent substrate including a first region and a second region, a first transparent electrode disposed on a first surface of the transparent substrate, a second transparent electrode facing and spaced apart from the first transparent electrode, an organic light emitting layer disposed between the first and second transparent electrodes, an assistant electrode disposed between the first and second transparent electrodes and selectively masking the second region, and a light path changing structure disposed on a second surface of the transparent substrate and selectively masking the second region.
摘要:
Conventional optoconductive compounds, such as CIS or CdTe include scarce indium or environmentally-unfriendly cadmium. On the other hand, an optoconductive compound according to the present invention has high optoconductive efficiency without inclusion of indium and cadmium, wherein the optoconductive compound according to the present invention is represented by AXYY′ where A is a Group 11 element, X is a Group 15 element, and Y and Y′ are Group 16 elements in which Y and Y′ can be identical to or different from each other.
摘要:
The inventive concept provides light emitting devices and methods of manufacturing a light emitting device. The light emitting device may include a transparent substrate including a first region and a second region, a first transparent electrode disposed on a first surface of the transparent substrate, a second transparent electrode facing and spaced apart from the first transparent electrode, an organic light emitting layer disposed between the first and second transparent electrodes, an assistant electrode disposed between the first and second transparent electrodes and selectively masking the second region, and a light path changing structure disposed on a second surface of the transparent substrate and selectively masking the second region.