摘要:
Provided is a polymeric optical device comprising a substrate, a lower cladding layer formed on the substrate, at least one core layer pattern formed on a predetermined region of the lower cladding layer and an upper cladding layer having at least two sub-upper cladding layers and formed on the lower cladding layer in which the core layer pattern is formed, and a method of fabricating the same, whereby birefringence of a polymeric optical device could be improved and polarization dependence could be reduced by adjusting the thickness of the sub-upper cladding layer and the number of stacks thereof.
摘要:
A method for forming two conductive films isolated electrically from each other on the surface of a fiber is provided. According to the method, a fiber is attached into the grooves on a silicon substrate using photoresist as glue. A photoresist pattern for a conductive film on the surface of the fiber is formed by a photolithography process. After wet-etching some amount of the fiber on the patterned area, which is needed for lifting off a metal film deposited on the unnecessary area, a metal film is deposited over whole area of the wafer. Removing photo-resist by a heated stripper solution leaves a metal film only on the patterned area of the fiber and detaches the fibers from the grooves of the wafer The second metal film on the other side of the fiber can be formed by the same procedures as the first metal film except that the deposited surface of the fiber must be attached to the grooves upside down. The poled fiber using two conductive films can be applied to manufacture elements used in opto-electronic and fiber communication devices such as a modulator, a tunable filter and a switch, an electric field sensor, and a nonlinear fiber optics device such as a frequency converter, a dispersion compensator.
摘要:
An apparatus for generating an optical fiber laser capable of tuning a wavelength thereof. The apparatus comprises a pump laser to pump the light with changed polarization state, a light amplify fiber to produce a seed light using the pumped light from the pump laser at a certain operation wavelength and thereafter, when said seed light has stable frequency, to put out the light in that wavelength, a dispersion shift fiber to give a non-linear polarization effect to the output light from the light amplify fiber, a linear polarizer to tune the wavelength of the light from the dispersion shift fiber within a wavelength varying range, a light direction controller to give a certain oscillation direction to the tuned light, an optical element converging a light beam, with a cholesteric liquid crystal cell inserted, which transmits only a circularly polarized light having a consistent rotation period with the rotational direction of the liquid crystal surface and reflects all the rest of the light, and an output port to confirm a laser output light beam by putting out a certain portion of the light from said light converging element.
摘要:
A planar waveguide-type optical amplifier switch is disclosed. The switch is developed with the purpose of solving the problems that the conventional waveguide-type optical switch, which has been being used in the optical communication technique, has an optical loss and thereby requires an external optical amplifier which makes the whole devices not suitable for forming an integrated compact device. The disclosed switch performs switching function from the refractive index change in the optical waveguides induced by electrical or optical controls as well as amplifying function of the optical signal, when it passes through the waveguides, from use of optical waveguides formed of a fluorescence emitting material with an optical pumping and a wavelength division multiplexing (WDM) optical waveguide-type coupler. The optical amplifier switch scheme, which provides a simultaneous optical switching and amplification in an optical waveguide form, allows the device fabricable in a compact integrated manner and more useful in practical applications. The optical amplifier switch in accordance with the present invention can replace the conventional optical switches of the prior art, and can promote technical development in the areas of high-capacity optical communication systems, massive optical signal processing, optical switching, optical computing, and so on.
摘要:
A laser structure for obtaining an optical pulse of a very short duration by using the benefit of a passive mode locking and for improving a repetition rate of an output optical pulse was described. In general, a passively mode-locked laser generates a short optical pulse than a active mode locked laser does, while it has difficulties in increasing the repetition rate of the output optical pulse because the repetition rate of the passively mode-locked laser is determined by the length of the resonator. In accordance with the present invention, a delayed optical path is added to the linear loop of a conventional figure-8 optical fiber laser. The propagation time difference .DELTA.T between the delayed optical path and undelayed short optical path is adjusted to a divisor of the round trip time, T, of the original resonator by properly adjusting the length of the delayed optical path. Thus, the repetition rate of the output optical pulse of the mode locked laser can be increased from 1/T Hz to 1/.DELTA.T Hz. The optical fiber laser which can fully exploit the advantages of the passive mode locking and improve the repetition rate of the output optical pulse in accordance with the present invention can be applied to a wide range of applications including an optical communication and an ultra high speed analysis of optical phenomena.
摘要翻译:描述了通过利用被动模式锁定和改善输出光脉冲的重复率来获得非常短持续时间的光脉冲的激光结构。 通常,被动锁模激光器产生比有源模式锁定激光器短的光脉冲,而由于被动锁模激光器的重复频率由被动锁模激光器的重复频率确定,所以难以增加输出光脉冲的重复率 谐振器的长度。 根据本发明,将延迟的光路添加到常规的图8的光纤激光器的线性环路中。 延迟光路和未延迟的短光路之间的传播时间差DELTA T通过适当地调节延迟光路的长度来调整到原始谐振器的往返时间T的除数。 因此,锁模激光器的输出光脉冲的重复率可以从1 / T Hz增加到1 / DELTA T Hz。 可以充分利用被动模式锁定的优点并提高根据本发明的输出光脉冲的重复率的光纤激光器可以应用于广泛的应用,包括光通信和超高速分析 的光学现象。
摘要:
A measurement of nonlinear refractive index coefficient of an optical fiber with a Sagnac interferometer, comprises the steps of employing the optical fiber in a Sagnac interferometer, splitting a signal beam into two signals, launching the two split signals into the interferometer in opposite directions, combining and detecting the signals counter-propagated in the interferometer, and detecting the refractive index coefficient of the optical fiber in accordance with the difference between the two signal powers determined by a control beam. The quasi-static phase shift of the signal beam counter-propagating the same paths of the interferometer is induced by rotating the optical fiber loop of the interferometer. The present invention gives rise to little error because it does not require precise information about the pulse width of a used beam or a high-power light.
摘要:
Measuring of an electro-optic coefficient and a thermo-optic coefficient of an optical device and an optical material, and more specifically, to measurement systems and methods of evaluating the electro-optic and thermo-optic coefficients by using interference fringe measurement techniques, wherein those optical characteristics can be precisely measured over a wide wavelength intended without using a complicated measuring equipment. The system for measuring an electro-optic coefficient includes: a light source for outputting an optical beam of multi-wavelengths, an optical interferometer including an optical beam splitter for dividing the optical beam received from the light source into two separate beams, a reference arm for receiving any one of the divided optical beams, a sample arm for receiving the other of the divided optical beams and applying a voltage to an optical sample to be measured by being connected to the optical sample, and an optical beam combiner for combining and mutually interfering optical beams that are output through the reference arm and the sample arm, and an optical spectrum analyzing device for receiving the mutually interfered optical beam from the optical interferometer and analyzing a spectrum of the mutually interfered optical beam.
摘要:
The present invention relates to the polarization-independent optical polymeric intensity modulator independent of input signal using polymers with electro-optical property. To use the electro-optical property for electro-optical polymer, polymers must be poled by applying high voltage to the waveguide. The size of phase modulation caused by such an poling varies from the biggest value at polarization parallel to the poling to the smallest value at polarization perpendicular to the poling. Therefore, the performance of the electro-optical polymeric intensity modulator depends on the polarization state of input light. The present invention provides the polarization-independent optical polymeric intensity modulator capable of modulating the optical intensity without regard to the polarization of the input signal by making the polarizing directions of two optical paths of M-Z interferometer perpendicular each other.
摘要:
A high-speed wavelength channel selector has properties of relatively easy manufacturing and easy extension to multi-channel integration, and a high-speed space and wavelength multiplexed channel selector uses the high-speed wavelength channel selector. The high-speed wavelength channel selector is integrated with electro-optic waveguide switches of non-crystalline materials, such as electro-optic polymers or glasses, in the middle of a pair of wavelength multiplexer and demultiplexer and the high-speed space and wavelength multiplexed channel selector has the photonic integrated circuit-type composition of a space multiplexed channel selector containing M electro-optic waveguide switches and an M×1 channel combiner, the high-speed wavelength channel selector, optical amplifier and a high-speed wavelength converter.
摘要:
An optical fiber cascaded Raman laser scheme is provided. An optical fiber cascaded Raman laser scheme in accordance with an embodiment of the present invention includes a pump light source, an optical fiber, a wavelength division multiplexing optical fiber combiner, another wavelength division multiplexing optical fiber combiner, a short period optical fiber bragg grating, a long period bragg grating, first means, and second means. The pump light source generates pump light. The optical fiber causes Raman scattering regarding the optical pump light as nonlinear material. The wavelength division multiplexing optical fiber combiner forms intra cavity regarding light of second order stoke frequency shifted wavelength. The light is stoke frequency shifted by Raman scattering of the optical fiber. The another wavelength division multiplexing optical fiber combiner forms intra cavity regarding light of first and third order stoke frequency shifted wavelength. The light is stoke frequency shifted by Raman scattering of the optical fiber. The short period optical fiber bragg grating selects and reflects fourth stoke frequency shifted wavelength of output wavelength in intra cavity. The intra cavity is formed by the wavelength division multiplexing optical fiber combiner. The long period bragg grating causes loss on fifth order stoke frequency shifted wavelength and prevents oscillation. The fifth order is next order of output wavelength of the intra cavity. The first means passes pump light emitted from the pump light source and reflects light of fourth order stoke frequency shifted output wavelength. The first means is connected between the pump light source and the wavelength division multiplexing optical fiber combiner. The second means reflects pump light emitted from the pump light source and passing light of output wavelength.