Abstract:
Disclosed herein are techniques for implementing vehicle ECU reprogramming, so the ECU programming, which plays a large role in vehicle performance characteristics, is tailored to current operational requirements, which may be different than the operational characteristics selected by the manufacturer when initially programming the vehicle ECU (or ECUs) with specific instruction sets, such as fuel maps. In one embodiment, a controller monitors the current operational characteristics of the vehicle, determines the current ECU programming, and determines if a different programming set would better suited to the current operating conditions. In the event that the current programming set should be replaced, the controller implements the ECU reprogramming. In a related embodiment, users are enabled to specify the ECU programming to change, such as changing speed limiter settings.
Abstract:
Disclosed herein are techniques for implementing vehicle ECU reprogramming, so the ECU programming, which plays a large role in vehicle performance characteristics, is tailored to current operational requirements, which may be different than the operational characteristics selected by the manufacturer when initially programming the vehicle ECU (or ECUs) with specific instruction sets, such as fuel maps. In one embodiment, a controller monitors the current operational characteristics of the vehicle, determines the current ECU programming, and determines if a different programming set would better suited to the current operating conditions. In the event that the current programming set should be replaced, the controller implements the ECU reprogramming. In a related embodiment, users are enabled to specify the ECU programming to change, such as changing speed limiter settings.
Abstract:
Disclosed herein are techniques for implementing vehicle ECU reprogramming, so the ECU programming, which plays a large role in vehicle performance characteristics, is tailored to current operational requirements, which may be different than the operational characteristics selected by the manufacturer when initially programming the vehicle ECU (or ECUs) with specific instruction sets, such as fuel maps. In one embodiment, a controller monitors the current operational characteristics of the vehicle, determines the current ECU programming, and determines if a different programming set would better suited to the current operating conditions. In the event that the current programming set should be replaced, the controller implements the ECU reprogramming. In a related embodiment, users are enabled to specify the ECU programming to change, such as changing speed limiter settings.
Abstract:
Disclosed herein are techniques for implementing vehicle ECU reprogramming, so the ECU programming, which plays a large role in vehicle performance characteristics, is tailored to current operational requirements, which may be different than the operational characteristics selected by the manufacturer when initially programming the vehicle ECU (or ECUs) with specific instruction sets, such as fuel maps. In one embodiment, a controller monitors the current operational characteristics of the vehicle, determines the current ECU programming, and determines if a different programming set would better suited to the current operating conditions. In the event that the current programming set should be replaced, the controller implements the ECU reprogramming. In a related embodiment, users are enabled to specify the ECU programming to change, such as changing speed limiter settings.
Abstract:
Disclosed herein are techniques for implementing vehicle ECU reprogramming, so the ECU programming, which plays a large role in vehicle performance characteristics, is tailored to current operational requirements, which may be different than the operational characteristics selected by the manufacturer when initially programming the vehicle ECU (or ECUs) with specific instruction sets, such as fuel maps. In one embodiment, a controller monitors the current operational characteristics of the vehicle, determines the current ECU programming, and determines if a different programming set would better suited to the current operating conditions. In the event that the current programming set should be replaced, the controller implements the ECU reprogramming. In a related embodiment, users are enabled to specify the ECU programming to change, such as changing speed limiter settings.
Abstract:
Disclosed herein are techniques for implementing vehicle ECU reprograming, so the ECU programming, which plays a large role in vehicle performance characteristics, is tailored to current operational requirements, which may be different than the operational characteristics selected by the manufacturer when initially programming the vehicle ECU (or ECUs) with specific instruction sets, such as fuel maps. In one embodiment, a controller monitors the current operational characteristics of the vehicle, determines the current ECU programming, and determines if a different programming set would better suited to the current operating conditions. In the event that the current programming set should be replaced, the controller implements the ECU reprogramming. In a related embodiment, users are enabled to specify the ECU programming to change, such as changing speed limiter settings.
Abstract:
Disclosed herein are techniques and structures to update vehicle controller programming in a vehicle. Such updating includes logically coupling at least one data link to a vehicle controller and alerting a driver, via an output device, about an impending update to the vehicle controller. Approval for the wirelessly received impending update to the vehicle controller is received from the driver via an input device. The controller update from a remote source is passed via the at least one data link; and upon receiving the controller update, the controller update is used to change programming of the vehicle controller.
Abstract:
Disclosed herein are techniques for implementing vehicle ECU reprograming, so the ECU programming, which plays a large role in vehicle performance characteristics, is tailored to current operational requirements, which may be different than the operational characteristics selected by the manufacturer when initially programming the vehicle ECU (or ECUs) with specific instruction sets, such as fuel maps. In one embodiment, a controller monitors the current operational characteristics of the vehicle, determines the current ECU programming, and determines if a different programming set would better suited to the current operating conditions. In the event that the current programming set should be replaced, the controller implements the ECU reprogramming. In a related embodiment, users are enabled to specify the ECU programming to change, such as changing speed limiter settings.