Abstract:
Provided is an internal combustion engine control device capable of appropriately correcting a flow rate of EGR gas. Therefore, an internal combustion engine control device 20 includes moisture amount calculation units 301 and 302, a dew condensation calculation unit 303, and an EGR correction unit 304. The moisture amount calculation unit 301 calculates a total moisture amount contained in the mixed gas. The dew condensation calculation unit 303 calculates a dew condensation generation amount WQcon in an intercooler based on the total moisture amount. The EGR correction unit 304 corrects a flow rate of the EGR gas based on the dew condensation generation amount WQcon.
Abstract:
A fuel filter monitoring method includes receiving pressure signals that are indicative of a pressure drop across at least one fuel filter of a fuel supply system configured to supply fuel to at least one fuel injector of an internal combustion engine and receiving a condition signal indicative of a condition of a fuel supply system, the condition signal being generated by one or more of a geographic location sensor, an altitude sensor, and/or a fuel temperature sensor. The method includes estimating a remaining life of at least one fuel filter of the fuel supply system based on the pressure signal and the condition signal and outputting a notification indicative of the estimated remaining life.
Abstract:
An air supply device for an electrically heated catalyst is proposed. The device includes an electronic supercharger fluidly connected to an intake manifold, an intake valve fluidly connected to the electronic supercharger, an exhaust valve fluidly connected to an exhaust manifold of the engine, an electrically heated catalyst fluidly connected to the exhaust manifold and positioned in a front end of a catalyst part, and a controller configured to control driving of the electronic supercharger and an opening degree of each of the intake valve and the exhaust valve. The controller controls the electronic supercharger based on a door opening condition in a cold operation and switches the intake valve to an advance state and the exhaust valve to a retard state, thus heating the electrically heated catalyst.
Abstract:
In a method for controlling engine power during charge depleting (CD) mode heating of a plug-in hybrid electric vehicle (PHEV), the engine power is controlled according to an amount of heat of an engine required for heating determined using a level of an air-conditioning blower at a point in time at which an operation of the engine starts, an outdoor air temperature, and a coolant temperature, if a full automatic temperature controller (FATC) operates the engine for heating when the vehicle is driven in a CD mode.
Abstract:
A method and a system for determining a temperature for pressurized fuel included in a high pressure fuel system arranged for providing fuel to an engine are presented. The method includes determining a first temperature for a first fuel volume included in a first section of the high pressure fuel system, where the first section includes a common rail fuel system. The method further includes determining a second temperature for a second fuel volume included in a second section of the high pressure fuel system, where the second section includes at least one fuel injector arranged in a cylinder head of the engine. The method also includes the step of determining the temperature for the pressurized fuel based at least on the first temperature and on the second temperature.
Abstract:
Methods and systems are provided for controlling an engine idle-stop based on upcoming traffic and road conditions. In one example, a method may include receiving data including traffic information and road characteristics immediately ahead of a vehicle from one or more remote sources, and adjusting one or more vehicle thresholds based on the received data. A duration of a prospective engine idle-stop may be estimated based on the received data and an engine idle-stop may be initiated based on the duration of the prospective engine idle-stop and the adjusted one or more vehicle threshold.
Abstract:
A method of phasing the opening and closing of internal combustion engine intake and exhaust valves relative to the rotation of the crankshaft is based upon changes in engine speed, engine load and ambient relative humidity. During certain conditions of higher humidity, in order to maintain good combustion stability and thus overall engine operation, it is necessary to reduce intake and exhaust valve overlap by adjusting the phase of the intake and exhaust camshafts. This is achieved by utilizing a set of cam position reference values and constraints based upon engine speed, engine load and humidity that are contained in lookup tables that adjust and limit cam position and valve overlap. Generally speaking, in order to maintain optimum engine performance, intake and exhaust valve overlap is reduced with higher ambient humidity and vice versa.
Abstract:
A first vehicle includes a hydrocarbon sensor and a controller in communication with the hydrocarbon sensor. The controller is programmed to receive data from the hydrocarbon sensor indicating hydrocarbon emissions and determine that the hydrocarbon emissions originated in a second vehicle and are exceed a predetermined threshold. The controller may further be programmed to transmit a message reporting the hydrocarbon emission to a remote server.
Abstract:
Methods and systems are provided for triggering a humidity measurement based on changes in ambient conditions. In one example, a method may include, in response to a higher than threshold change in ambient air temperature or pressure, operating an oxygen sensor to update an ambient humidity estimate. Engine operation parameters may be adjusted based on the updated ambient humidity estimate.
Abstract:
Methods and systems are provided for adjusting a vehicle operation based on an output of a hydrocarbon sensor located in a canister vent line coupling a fuel vapor canister and the atmosphere in order to reduce exhaust and evaporative emissions, and improve fuel economy while providing improved cabin comfort. Specifically, in response to determining an ambient hydrocarbon amount greater than a threshold based on the hydrocarbon sensor output during purging, the purging operation may be terminated, and the canister may be sealed from the atmosphere. Further, in response to the determination, a vehicle climate control system may be adjusted to stop providing fresh air to the vehicle cabin and provide only cabin air recirculation, and an engine operation may be adjusted such that a ratio of a port fuel injection amount to a direct fuel injection amount is increased.