Abstract:
A system and method for detecting heliostat failures in a concentrating solar plant, the system comprising a plurality of stationary lights and cameras mounted to towers that surround, or are situated within, a field of heliostats. Heliostats may be commanded via a control system to move to a position wherein light may be expected to be reflected from a given stationary light to a given camera, whereupon a first set of images of the heliostat are taken. Heliostats may then be commanded via the control system to move to a position wherein light may no longer be expected to be reflected from said stationary light to said camera, whereupon a second set of images of the heliostat are taken. An image processor may search the first and second set of images to determine if reflected light is present. If reflected light from said stationary light is not found in the images, the heliostat may be determined to have experienced a failure mode. Failed heliostats may then be flagged for inspection, repair, or replacement.
Abstract:
A system and method for detecting heliostat failures in a concentrating solar plant, the system comprising a plurality of stationary lights and cameras mounted to towers that surround, or are situated within, a field of heliostats. Heliostats may be commanded via a control system to move to a position wherein light may be expected to be reflected from a given stationary light to a given camera, whereupon a first set of images of the heliostat are taken. Heliostats may then be commanded via the control system to move to a position wherein light may no longer be expected to be reflected from said stationary light to said camera, whereupon a second set of images of the heliostat are taken. An image processor may search the first and second set of images to determine if reflected light is present. If reflected light from said stationary light is not found in the images, the heliostat may be determined to have experienced a failure mode. Failed heliostats may then be flagged for inspection, repair, or replacement.
Abstract:
An automated deflectometry system and method for assessing the quality of a reflective surface for use in a concentrating solar power plant. The deflectometry system comprises a holding fixture for mounting a heliostat reflector opposite a target screen having a known pattern. Digital cameras embedded in the target screen take pictures of the known pattern as reflected in the surface of the reflector. Image processing software then detects the features of the pattern in the reflector images and calculates the slope profile of the reflective surface. The slope field can be calculated by comparing the images of the reflective surface to those of a reference surface. Based on the slope profile of the reflective surface, a ray tracing calculation can be performed to simulate flux as reflected from the reflective surface onto a receiver and a quality metric can be ascribed to the heliostat reflector. The result of the quality assessment can displayed using a graphical user interface on an automated assembly line.