Abstract:
Multi-mode waveguide filters are temperature compensated using dielectric material contained within at least one cavity of a filter. The variation in operating frequency of the filter that would otherwise result from changes in temperature is substantially balanced by a change in operating frequency with temperature caused by a change in a dielectric constant of the dielectric material so that the operating frequency of the filter remains substantially constant with temperature. The filter can have one or more dual-mode or triple-mode cavities. In a method of constructing and compensating a filter, the amount of dielectric material is selected so that the dielectric material does not resonate at the operating frequency of the cavity, the amount of dielectric material in the cavity being adjustable after each cavity is constructed. The cavity is operated with a fixed amount of dielectric material contained in the cavity for each mode and the change in operating frequency of the filter with temperature is determined. If the change in operating frequency of the filter is not at an acceptable level, the amount of dielectric material contained in the cavity for each mode is varied and the filter is operated through a range of temperatures to determine whether the change in operating frequency is then at an acceptable level. These steps are repeated until the change in operating frequency of the filter is at an acceptable level.
Abstract:
A power divider has a microstripline circuit with bandpass filters at each output that are lumped element printed bandpass filters. The filters widen the isolation bandwidth of the divider. Power dividers can be reversed for use as power combiners.
Abstract:
A resonant microwave cavity 2 has a bi-metal end cap 4 or a tri-metal end cap 26. The end caps 4, 26 include irises 10, 28. The end caps are affixed to walls of the cavity 2 in the usual manner. As temperature varies, the end caps or irises expand into or out of the cavity to compensate for the increase or decrease in length of the cavity walls due to variations in temperature. The internal volume of the cavity is maintained substantially constant. When a bi-metal end cap is used, each layer of metal has a different coefficient of expansion. When a tri-metal end cap is used, the center layer has the highest of coefficient of thermal expansion.
Abstract:
The invention relates to a broad bandwidth frequency divider which converts a band of input frequencies into a band of output frequencies such that each output frequency is one half the corresponding input frequency. The frequency divider has a first rectangular waveguide which propagates the band of input frequencies and a second larger rectangular waveguide which propagates the band of output frequencies. The two waveguides are orthogonally disposed with respect to one another and are interconnected by a slot provided in a common wall. Two nonlinear capacitive reactances are mounted in the first waveguide, one on each side of the slot, forming a transverse resonator. When the two nonlinear reactances are pumped in phase at the input frequency, parametric subharmonic resonance can be excited transversely at one half the input frequency such that the nonlinear reactance voltages are 180.degree. out of phase at the output frequency. A corresponding subharmonic voltage developed across the slot is coupled directly into the output waveguide. The symmetry of the arrangement isolates the input frequency from the output port whereas the low-frequency cutoff property of the first waveguide isolates the output frequency from the input port. An arrangement is provided for biasing the nonlinear capacitive reactances.