Abstract:
A real-time fraud prevention system enables merchants and commercial organizations on-line to assess and protect themselves from high-risk users. A centralized database is configured to build and store dossiers of user devices and behaviors collected from subscriber websites in real-time. Real, low-risk users have webpage click navigation behaviors that are assumed to be very different than those of fraudsters. Individual user devices are distinguished from others by hundreds of points of user-device configuration data each independently maintains. A client agent provokes user devices to volunteer configuration data when a user visits respective webpages at independent websites. A collection of comprehensive dossiers of user devices is organized by their identifying information, and used calculating a fraud score in real-time. Each corresponding website is thereby assisted in deciding whether to allow a proposed transaction to be concluded with the particular user and their device.
Abstract:
Real-time fraud prevention software-as-a-service (SaaS) products include computer instruction sets to enable a network server to receive medical histories, enrollments, diagnosis, prescription, treatment, follow up, billings, and other data as they occur. The SaaS includes software instruction sets to combine, correlate, categorize, track, normalize, and compare the data sorted by patient, healthcare provider, institution, seasonal, and regional norms. Fraud reveals itself in the ways data points deviate from norms in nonsensical or inexplicable conduct. The individual behaviors of each healthcare provider are independently monitored, characterized, and followed by self-spawning smart agents that can adapt and change their rules as the healthcare providers evolve. Such smart agents will issue flags when their particular surveillance target is acting out of character, outside normal parameters for them. Fraud controls can therefore be much tighter than those that have to accommodate those of a diverse group.
Abstract:
An artificial intelligence cross-channel fraud management system comprises a parallel arrangement of single-channel, fully trained fraud models that each integrate several artificial intelligence classifiers like neural networks, case based reasoning, decision trees, genetic algorithms, fuzzy logic, and rules and constraints. These are further integrated by the expert programmers and development system with smart agents and associated real-time profiling, recursive profiles, and long-term profiles. The trainable general payment fraud models are trained into channel specialists with channel-filtered supervised and unsupervised data to produce each channels payment fraud model. This then is applied by a commercial client to process real-time cross-channel transactions and authorization requests for fraud scores. A detection of fraud in one channel is used to immediately sensitize all the other fraud channel models to the involved accountholder. Low level, but broad spectrum fraud can be used to trigger all the accounts of a compromised accountholder or merchant data breach.
Abstract:
An artificial intelligence fraud management solution comprises an expert programmer development system to build trainable general payment fraud models that integrate several artificial intelligence classifiers like neural networks, case based reasoning, decision trees, genetic algorithms, fuzzy logic, and rules and constraints. These are further integrated by the expert programmers and development system with smart agents and associated real-time profiling, recursive profiles, and long-term profiles. The trainable general payment fraud models are trained with supervised and unsupervised data to produce an applied payment fraud model. This then is applied by a commercial client to process real-time transactions and authorization requests for fraud scores.