Abstract:
A position detecting device for detecting a position of an object, includes a light emitting portion that emits light, a light receiving portion that receives the light from the light emitting portion, and a scale that is arranged between the light emitting portion and the light receiving portion, and includes a position detecting pattern and a smear detecting pattern. The position detecting pattern has a first light transmitting portion for transmitting the light from the light emitting portion and a first light interception portion for intercepting the light from the light emitting portion which are alternately arranged in a detection range of the object. The smear detecting pattern for detecting smear of the scale has a second light transmitting portion for transmitting the light from the light emitting portion and a second light interception portion for intercepting the light from the light emitting portion which are alternately arranged.
Abstract:
A position detecting device for detecting a position of an object, includes a light emitting portion that emits light, a light receiving portion that receives the light from the light emitting portion, and a scale that is arranged between the light emitting portion and the light receiving portion, and includes a position detecting pattern and a smear detecting pattern. The position detecting pattern has a first light transmitting portion for transmitting the light from the light emitting portion and a first light interception portion for intercepting the light from the light emitting portion which are alternately arranged in a detection range of the object. The smear detecting pattern for detecting smear of the scale has a second light transmitting portion for transmitting the light from the light emitting portion and a second light interception portion for intercepting the light from the light emitting portion which are alternately arranged.
Abstract:
A printing apparatus for printing on a medium to be printed includes an ink ejection section for intermittently ejecting ink while moving, wherein the printing apparatus detects a distance from the ink ejection section to the medium to be printed, and controls a timing of intermittent ejection of the ink from the ink ejection section based on the distance that has been detected. With such a printing apparatus, the timing at which ink is ejected can be controlled taking into account the distance from the ink ejection section to the medium to be printed.
Abstract:
A liquid ejecting apparatus includes a liquid ejecting head which ejects a liquid onto a liquid ejection surface of an ejection target member; a scanning unit which scans the liquid ejecting head relative to the ejection target member; a driving force transmission mechanism which transmits driving force of a rotary driving force source to the scanning unit through a belt; an encoder which detects a scanning position of the liquid ejecting head relative to the ejection target member and having a scale disposed at a position adjacent to the belt; and a neutralizing unit which removes static electricity from the belt.
Abstract:
A printing apparatus including: a first motor configured to provide a drive force for rotating a roll member that is a wound medium; a second motor configured to provide a drive force for driving a transporting drive roller provided on a downstream side of the roll member along a feeding direction of the medium for transporting the medium; and a control unit configured to drive at least one of the first motor and the second motor to cancel the slackness of the medium generated between the roll member and the transporting drive roller.
Abstract:
A printing method includes the steps of: emitting light from a light-emitting section of an optical sensor toward a support member for supporting a medium, the support member being provided with an ink collecting section for collecting ink that has been ejected from an ink ejecting section and that has landed outside of the medium; changing a threshold value based on a signal that is output from the optical sensor in correspondence with an intensity of light reflected by the support member and received by a light-receiving section of the optical sensor; and detecting the medium by comparing the signal that is output from the optical sensor and the threshold value that has been changed.
Abstract:
A fuel cell system has a plurality of fuel cells stacked in one or more groups of fuel cells. Each fuel cell includes a fuel electrode supplied with fuel gas at a fuel gas supply pressure, an oxidizing electrode supplied with oxidizing gas at an oxidizing gas supply pressure, and an electrolyte membrane disposed between the fuel electrode and the oxidizing electrode. A pressure-difference control unit generates a pressure difference across the membrane such that the fuel gas supply pressure is greater than the oxidizing gas supply pressure in each fuel cell, a cell-voltage measuring device measures a cell voltage for each fuel cell or each group of fuel cells in the fuel cell stack, and a leakage determination unit determines the presence or absence of a leaking cell based on the behavior of the cell voltage of each fuel cell while the pressure difference is increased with time.
Abstract:
A printer has a motor and an encoder. The encoder opposes a scale having marks or slits at predetermined intervals. Staggered detectors detect positions of the marks or slits, and output detection signals. Signal generators output signals with respective frequencies based on the various detectors. A controller detects the rotational position and speed of the motor the signals output from the signal generators, and controls the rotational speed of the motor by PID control on the basis of the position and speed thus detected.
Abstract:
The present invention relates to a liquid ejecting apparatus including: a movable head provided with a plurality of nozzles for ejecting a liquid; a carry unit for carrying a medium in a predetermined carrying direction; and a sensor for detecting an edge of the medium, the liquid ejecting apparatus controlling ejection of the liquid from the plurality of nozzles in accordance with a result of the detection of the sensor. In this liquid ejecting apparatus, the position, in the carrying direction, of the sensor is at the same position of or on an upstream side of a nozzle located most upstream in the carrying direction, of among the plurality of nozzles. In this way, it is possible to arrange the sensor for detecting the edge of the paper at the most suitable position, and to suppress waste of ink that is ejected from the nozzles.
Abstract:
A position detecting device, includes a light emitting portion that includes a light emitting surface which emits light, a light receiving portion that includes a light receiving surface which receives the light from the light emitting portion, a scale that is arranged between the light emitting surface and the light receiving surface, and a cleaning member that is fixed to the scale to clean at least one of the light emitting surface and the light receiving surface.