摘要:
A display unit capable of being simply designed and manufactured by using more simplified light emitting device structure while capable of high definition display and display with superior color reproducibility and a manufacturing method thereof are provided. The display unit is a display unit (1), wherein a plurality of organic EL devices (3B), (3G), and (3R), in which a function layer (6) including a light emitting layer (11) is sandwiched between a lower electrode (4) made of a light reflective material and a semi-transmissive upper electrode (7), and which has a resonator structure in which light h emitted in the light emitting layer (11) is resonated using a space between the lower electrode (4) and the upper electrode (7) as a resonant section (15) and is extracted from the upper electrode (7) side are arranged on a substrate (2). In the respective organic EL devices (3B), (3G), and (3R), the function layer (6) is made of an identical layer, and an optical distance L of the resonant section (15) is set to a value different from each other so that blue, green, or red wavelength region is resonated.
摘要:
A reflecting apparatus comprising: an array of reflectors including a first subset of reflectors and a second subset of reflectors, wherein the first subset of reflectors guide light toward a first viewing position and the second subset of reflectors guide light toward a second viewing position that is different from the first viewing position.
摘要:
A light emitting device includes: a first electrode, a conductor film, an organic layer having a light emitting layer made of an organic light emitting material provided therein, a semi-transmissive reflective film, a resistive layer, and a second electrode, all of which are laminated successively, wherein the conductor film transmits a part of light from the light emitting layer therethrough, the first electrode reflects the light having been transmitted through the conductor film, the second electrode transmits the light having been transmitted through the semi-transmissive reflective film therethrough, an average film thickness of the conductor film on the first electrode is from 1 nm to 6 nm, and an average film thickness of the semi-transmissive reflective film on the organic layer is from 1 nm to 6 nm.
摘要:
An organic electroluminescence display device is provided. The organic electroluminescence display device includes plural organic electroluminescence elements. Each organic electroluminescence element includes: a lower electrode; an insulating layer having an opening, in which a lower electrode is exposed at the bottom of the opening; an auxiliary wiring; a stacked structure provided from a portion over the lower electrode exposed at the bottom of the opening to a portion of the insulating layer surrounding the opening, including a light emitting layer made of an organic light-emitting material; and an upper electrode. At least one layer of the stacked structure partially contacts the auxiliary wiring. The insulating layer and the auxiliary wiring are provided in common to the plurality of organic EL elements. The upper electrode covers the whole surface of the stacked structures and the auxiliary wiring.
摘要:
Provided are a display device and a display unit having higher light extraction efficiency. An optical distance L1 between a maximum light-emitting position of a light-emitting layer and a first end portion satisfies L1=tL1+a1 and (2tL1)/λ=−Φ1/(2π)+m1. An optical distance L2 between the maximum light-emitting position and a second end portion satisfies L2=tL2+a2 and (2tL2)/λ=−Φ2/(2π)+m2. In the formulas, tL1 and tL2 represent a theoretical optical distance between the first end portion and the maximum light-emitting position and a theoretical optical distance between the second end portion and the maximum light-emitting position, respectively, a1 and a2 represent correction amounts based upon a light-emitting distribution in the light-emitting layer, λ represents a peak wavelength of the spectrum of light desired to be extracted, Φ1 and Φ2 represent a phase shift of reflected light generated in the first end portion and a phase shift of reflected light generated in the second end portion, respectively, and each of m1 and m2 is 0 or an integer.
摘要:
Disclosed herein is a display device provided with: (A) a plurality of light-emitting devices comprising a first electrode, an organic layer including a light-emitting layer and a second electrode configured to resonate light, which is generated in the light-emitting layer, between a first interface defined by an interface between the first electrode and the organic layer and a second interface defined by an interface between the second electrode and the organic layer, and (B) a transparent upper substrate having a first side facing the second electrode and a second side located on an opposite side of the first side, and fixed above the second electrode.
摘要:
An organic electroluminescence display device is provided. The organic electroluminescence display device includes plural organic electroluminescence elements. Each organic electroluminescence element includes: (A) a lower electrode; (B) an insulating layer having an opening, in which a lower electrode is exposed at the bottom of the opening; (C) an auxiliary wiring; (D) a stacked structure provided from a portion over the lower electrode exposed at the bottom of the opening to a portion of the insulating layer surrounding the opening, including a light emitting layer made of an organic light-emitting material; and (E) an upper electrode. At least one layer of the stacked structure partially contacts the auxiliary wiring. The insulating layer and the auxiliary wiring are provided in common to the plurality of organic EL elements. The upper electrode covers the whole surface of the stacked structures and the auxiliary wiring.
摘要:
Provided are a display device and a display unit having higher light extraction efficiency. An optical distance L1 between a maximum light-emitting position of a light-emitting layer and a first end portion satisfies L1=tL1+a1 and (2tL1)/λ=−Φ1/(2π)+m1. An optical distance L2 between the maximum light-emitting position and a second end portion satisfies L2=tL2+a2 and (2tL2)/λ=Φ2/(2π)+m2. In the formulas, tL1 and tL2 represent a theoretical optical distance between the first end portion and the maximum light-emitting position and a theoretical optical distance between the second end portion and the maximum light-emitting position, respectively, a1 and a2 represent correction amounts based upon a light-emitting distribution in the light-emitting layer, λ represents a peak wavelength of the spectrum of light desired to be extracted, Φ1 and Φ2 represent a phase shift of reflected light generated in the first end portion and a phase shift of reflected light generated in the second end portion, respectively, and each of m1 and m2 is 0 or an integer.
摘要翻译:提供了具有较高光提取效率的显示装置和显示单元。 在发光层的最大发光位置和第一端部之间的光学距离L 1> 1 1满足L 1 = t L 1< 1& + 1< 1>和(2tL 1/1)/λ= -P 1/2(2pi)+ m 1。 在最大发光位置和第二端部之间的光学距离L 2 2满足L 2 + 2 2 + 2 + 2< 2> 和(2tL 2 2)/λ= Phi 2 /(2pi)+ m 2 2。 在公式中,t L 1和t L 2表示第一端部和最大发光位置之间的理论光学距离,以及第二端部之间的理论光学距离 并且最大发光位置分别表示基于发光层中的发光分布的校正量,λ表示峰值 期望提取的光的光谱的波长,Phi1和Φ2表示在第一端部中产生的反射光的相移和反射光的相移 分别在第二端部产生,并且m 1和m 2 2中的每一个为0或整数。
摘要:
Provided is a display apparatus which can easily bond a drive panel (10) and a sealing panel (20) together. The drive panel (10) includes organic electroluminescence devices (10R), (10G) and (10B) on a substrate for drive (11) and extracts light from the side of the organic electroluminescence devices (10R), (10G) and (10B). The sealing panel (20) includes a color filter (22) on a substrate for sealing (21). The drive panel (10) and the sealing panel (20) are disposed to face each other, and the whole facing surfaces of the drive panel (10) and the sealing panel (20) are bonded together with an adhesive layer (30). The adhesive layer (30) is cured with at least heat, and is made of only one coating liquid or a combination of two or more coating liquids for curing. A temporary fixing portion (30A) is formed in an edge portion of the adhesive layer (30). The temporary fixing portion (30A) is made of, for example, an ultraviolet cure resin, and is formed so as to straddle between the sealing panel (20) and the drive panel to align their relative positions.
摘要:
A display unit has R, G, and B light-emitting pixels arranged in a predetermined sequence. The R pixels and the B pixels each have a G-light-absorbing filter at the image display side (light output side or external-light incident side) thereof. The G pixels have no filters. The R and B light-emitting pixels each have a composite structure including a reflective layer, an organic EL layer, and a translucent reflective layer. The translucent reflective layer and the reflective layer constitute an optical resonator that causes multiple interference of light. The transmittance of the G-light-absorbing filter is minimized at the G wavelength, at which the sensitivity of the naked eye is high, and maximized at the R and B wavelengths. Furthermore, the external light reflectance of each pixel is minimized at the G wavelength. This display unit significantly suppresses a decrease in contrast caused by external light without a decrease in luminance of an image.