Abstract:
The present invention relates to a thermoplastic resin composition. In more particular, a thermoplastic resin of graft ABS polymer and heat-resistant copolymer contains acryl-based resin, peroxide-based additive, or cross-linking additive, so that the thermoplastic resin composition of the present invention is effective in processing of a colored heat resistant ABS resin by having excellent cold stress whitening reduction and strength property, without lowering other properties as well as giving excellence in hot-tool weldability, pigmentation and paint spread property which are more important in post process, and maintaining the mechanical property as well as giving excellent heat-resistance and low gloss property.
Abstract:
A plasma display panel and a driving method thereof The driving method includes estimating a gray scale of an input image signal and checking on/off patterns of discharge cells in a sub-field representing the gray scale, identifying an insufficient discharge cell having the insufficient discharging pattern among the on/off patterns of the discharge cells, and increasing the width of a scan pulse applied to first electrodes of the insufficient discharge cell during an address period of the sub-field in which the identified insufficient discharge cell is discharged. With this method, efficiency of an address-discharge can be enhanced.
Abstract:
A plasma display panel driving method and apparatus. In a falling period of a reset period, a voltage at a scan electrode is gradually reduced to the voltage Vnf from the voltage Vs while a sustain electrode is maintained at the voltage Va. In an address period, the voltage Va is applied to an address electrode of a discharge cell to be turned on while the sustain electrode is maintained at the voltage Va. Therefore, the number of voltage sources can be reduced by establishing the voltage applied to the sustain electrode to correspond to the voltage Va in the falling period of the reset period and in the address period.
Abstract:
A panel driving apparatus for driving a panel having a plurality of panel blocks for a sustain discharge is provided. The panel driving apparatus includes a sustain discharge circuit part supplying a sustain pulse through an output terminal to the panel, and a switching part having a plurality of control switches for connecting the output terminal of the sustain discharge circuit part to the plurality of panel blocks. When electrodes of the panel are separated in blocks, the panel driving apparatus can be implemented at a low cost without any circuit variation during sustain discharge.
Abstract:
A plasma display device includes a plasma display panel (PDP) and a driving method for driving the PDP. The PDP includes discharge cells that are formed by scan electrodes, sustain electrodes, and address electrodes. The driving method divides a frame of the plasma display panel into a plurality of subfields having respective weights in which gray scales are represented by a combination of the subfields. The plurality of subfields are divided into a first group and a second group. In an address period of a subfield of the first having a lowest weight subfield of the plurality of subfields, the method applies a scan voltage and an address voltage respectively to the scan electrode and the address electrode of a discharge cell to be selected from the discharge cells. The scan voltage is applied to the scan electrode and the scan electrode is floated.
Abstract:
There are provided 3D glasses for use in a stereoscopic display device including a display panel for emitting right-eye image light and left-eye image light and an optical filter including a first area for adjusting a polarized state of the right-eye image light and a second area for adjusting a polarized state of the left-eye image light, comprising a right-eye area allowing right-eye image light to pass therethrough and a left-eye area allowing left-eye image light to pass therethrough; and compensation films disposed at the right-eye area and the left-eye area to compensate for a phase difference deviation between the first and second areas of the optical filter, wherein a phase difference value of the compensation film provided at the right-eye area and that of the compensation film provided at the left-eye area are different.
Abstract:
A plasma display device includes a plasma display panel (PDP) and a driving method for driving the PDP. The PDP includes discharge cells that are formed by scan electrodes, sustain electrodes, and address electrodes. The driving method divides a frame of the plasma display panel into a plurality of subfields having respective weights in which gray scales are represented by a combination of the subfields. The plurality of subfields are divided into a first group and a second group. In an address period of a subfield of the first having a lowest weight subfield of the plurality of subfields, the method applies a scan voltage and an address voltage respectively to the scan electrode and the address electrode of a discharge cell to be selected from the discharge cells. The scan voltage is applied to the scan electrode and the scan electrode is floated.
Abstract:
Disclosed is a plasma display device including a plasma display panel (PDP) including: a plurality of electrodes; a printed circuit board assembly (PBA) to drive the plasma display panel (PDP); and a chassis base including a first surface supporting the plasma display panel (PDP) and a second surface mounted with the printed circuit board assembly (PBA), wherein the edge of the plasma display panel (PDP) includes power signal lines to supply power to electrodes, the power signal lines are separated from the electrodes on the edge of the plasma display panel (PDP), the power signal lines are connected to the electrodes through the interface flexible printed circuit (FPC), and the resistivity of the power signal lines is lower than that of the electrodes.
Abstract:
A plasma display device includes a plasma display panel, a chassis base and circuit board assemblies mounted on the chassis base. The plasma display panel includes: a front substrate, a rear substrate, and a plurality of electrodes between the front and rear substrates; and an electrode pattern formed on the rear substrate and separate from the plurality of electrodes. The chassis base is adjacent the rear substrate. The electrode pattern is configured for transmitting power and signals utilized to drive the plurality of electrodes from at least one of the plurality of circuit board assemblies.
Abstract:
A PDP driving method. No rising ramp voltage is applied to a scan electrode during a reset period. The final voltage of a falling ramp voltage is reduced to a voltage by which all the discharge cells can fire the discharge during the reset period. A difference between the voltage applied to the address electrode of the discharge cell to be selected and the voltage applied to the scan electrode is established to be greater than the maximum discharge firing voltage.