Abstract:
A touch control driving unit includes a shift register module, a strobe module and an output module, wherein the shift register module includes a first control port, an incoming port and a triggering signal outgoing port, is connected to the strobe module, and is configured to generate a triggering signal; the strobe module includes a second control port and a strobe signal port, is connected to the shift register module, and is configured to control the output module; and the output module includes an outgoing port, a stable level port and a touch control signal port, and is configured to output a stable level or a touch control signal under control of the strobe module.
Abstract:
The present disclosure provides an array substrate and a display apparatus. The array substrate comprises at least two groups of signal lines, a common electrode line and at least two common electrode sub-lines, at least one signal line of one group of the at least two groups of signal lines is connected to one common electrode sub-line of the at least two common electrode sub-lines via a first electrostatic discharge circuit, at least one signal line of another group of the at least two groups of signal lines is connected to another common electrode sub-line of the at least two common electrode sub-lines via a second electrostatic discharge circuit, each common electrode sub-line is respectively connected to the common electrode line via a third electrostatic discharge circuit.
Abstract:
A touch screen and a display apparatus. The touch screen comprises first strip electrodes and second strip electrodes which are arranged intersecting with one another on different layers, and edges on both sides of a first electrode positioned on an upper layer of the second strip electrode in an extending direction have a wavy structure, and an included angle between respective polylines forming the wavy structure and the extending direction of the first strip electrode is an acute angle. In a touch period, the first strip electrodes are loaded with touch scanning signals, and the second strip electrodes couple voltage signals of the touch scanning signals and output coupled signals; or the second strip electrodes are loaded with the touch scanning signals, the first strip electrodes couple voltage signals of the touch scanning signals and output the coupled signals.
Abstract:
There are provided a shift register unit, a gate driving circuit and a display apparatus, which are configured to suppress interference noise due to a change of an alternating current clock signal and enhance stability of the shift register unit. The shift register unit comprises: an input module configured to charge a pull-up node in response to the input signal; a pull-down module configured to provide the low voltage signal to the pull-up node and the output terminal in response to a voltage signal of the pull-down node; a pull-down driving module configured to charge a pull-down node in response to the first clock signal and the second clock signal and discharge the pull-down node in response to the voltage signal of the pull-up node; an output module configured to provide a first clock signal to an output terminal in response to a voltage signal of the pull-up node; and a reset module configured to discharge the output terminal in response to the second clock signal.
Abstract:
The embodiments of the present invention provide a shift register unit, a gate driving device, a display panel and a display device for solving the problem of relatively large noise in the signal outputted by the shift register unit within non-working time when the clock signal is of high level. Within the non-working time of the shift register unit, i.e., when displaying a frame of images, in periods of time other than the period of time when the scan trigger signal is of high level and the period of time when the output end of the shift register unit is of high level, the first pull-down drive module can connect the output end of the shift register unit with a low level signal end when the received clock signal is of high level, or when the received clock signal is of low level and the output end of the shift register unit is of low level, thereby releasing the noise coupled to the output end of the shift register unit by the high level signal to the low level signal end, so as to reduce the noise in the signal outputted by the shift register unit in the non-working time.