Abstract:
The present invention provides a self-capacitive fingerprint recognition touch screen, a manufacturing method thereof, and a display device comprising the self-capacitive fingerprint recognition touch screen. The self-capacitive fingerprint recognition touch screen comprises a plurality of fingerprint recognition electrodes, and a plurality of connecting lines which are respectively electrically connected to the plurality of fingerprint recognition electrodes directly. The connecting lines are used for transmitting driving signals and detection signals needed by the fingerprint recognition electrodes.
Abstract:
The present invention provides a fingerprint recognition device, a display screen and a display device, which belong to the field of display technology and can solve the problem of high cost for conventional fingerprint recognition devices The fingerprint recognition device of the present invention arranged at a light emitting side of a display panel includes a protection substrate, a glass base positioned under the protection substrate, a plurality of detecting electrodes formed on the glass base, capacitance being formed between the plurality of detecting electrodes and ridges or valleys of a fingerprint when touching occurs, and a control unit used to recognize the fingerprint based on the capacitance. The fingerprint recognition device of the present invention has a simple structure and a low cost.
Abstract:
The present invention provides a pixel driving circuit, a pixel driving method, and a display device. The pixel driving circuit comprises a driving transistor, a light-emitting device and a threshold compensation unit; a control electrode, a first electrode and a second electrode of the driving transistor are all connected with the threshold compensation unit; the threshold compensation unit is connected with a data line, a first power supply terminal, and a first terminal of the light-emitting device. In the technical solution of the present invention, by providing the sum of the data voltage and the threshold voltage of the driving transistor to the control electrode of the driving transistor, a driving current generated by the driving transistor is independent of the threshold voltage of the driving transistor, so as to prevent the driving current from being influenced by non-uniformity and shift of the threshold voltage.
Abstract:
A color filter substrate, an array substrate and a display device are disclosed. The display device includes an opposed substrate and an array substrate, or an opposed substrate, an array substrate and a protection substrate located on a side of the opposed substrate that is apart from the array substrate. The display device is divided into a display area and a periphery area, at least one layer of periphery touch electrode is provided in the periphery area, the at least one layer of periphery touch electrode is disposed on at least one of the array substrate, the opposed substrate and the protection substrate. The display device can alleviate the problem of impacting viewing effects due to touch operation on the display area.
Abstract:
An in-cell touch panel and a display device are disclosed. The touch panel comprises: an upper substrate (01) and a lower substrate (02) that are disposed opposite to each other, with a planarization layer (09) and a spacer layer (10), which is disposed on the planarization layer (09), provided at a side, facing the lower substrate (02), of the upper substrate (01); and a plurality of self-capacitive electrodes (04) disposed in a same layer, insulated from each other and arranged between the planarization layer (09) and the spacer layer (10). In the touch panel, the self-capacitive electrodes (04) are arranged between the planarization layer (09) and the spacer layer (10) of the upper substrate (01), and thus patterning process for the planarization layer (09) can be omitted so as to reduce the manufacturing processes.
Abstract:
In a capacitive in-cell touch screen and a display device, the common electrode layer connected in the entire surface in the array substrate is divided to form touch driving electrodes and common electrodes which are insulated from each other and alternatively disposed, touch sensing electrodes are disposed on the upper substrate and touch driving electrodes are driven in a time-division manner to realize touch function and display function. Disposing projections of touch sensing electrodes on the array substrate in areas where common electrodes are may reduce right opposite areas between touch sensing electrodes and touch driving electrodes, thereby reduce opposite capacitance; providing sides of touch driving electrodes and adjacent sides of common electrodes as broken lines and providing consistent shapes for touch sensing electrodes and common electrodes may increase opposite areas between touch driving electrodes and touch sensing electrodes, thereby increasing projection capacitance per unit area. By increasing the proportion of projection capacitance over opposite capacitance, it is possible to increase proportion of variation amount of mutual capacitance caused by finger touching, and hence improving the touch accuracy.
Abstract:
An in-cell touch panel and a display device are provided. The in-cell touch panel includes an array substrate (100) and a counter substrate (200), with a black matrix pattern (210) provided on the array substrate (100) or the counter substrate (200). A common electrode layer (110) of the array substrate (100) includes a plurality of first touch electrodes (111) and a plurality of common electrodes (112) that are insulated from each other; the counter substrate (200) comprises a plurality of second touch electrodes (220), projections of the second touch electrodes (220) on the array substrate (100) lie within regions where the common electrodes (112) are located. Regions of the first touch electrodes (111) corresponding to the black matrix pattern (210) protrude toward the counter substrate (200) entirely or in part, and/or regions of the second touch electrodes (220) corresponding to the black matrix pattern (210) protrude toward the array substrate (100) entirely or in part. With the touch panel, the sensitivity of touch can be enhanced.
Abstract:
An in-cell touch panel and a display device are provided. The touch panel includes: an upper substrate and a lower substrate provided opposite to each other, a plurality of self-capacitance electrodes which are disposed between the upper substrate and the lower substrate and provided in a same layer and insulated from each other, and a touch detection chip configured to determine a touch position by detecting capacitance variation of the self-capacitance electrodes in the touch time-period. Thus, an in-cell touch panel with higher touch accuracy, lower cost, higher productivity and higher transmittance can be obtained.
Abstract:
Embodiments of the present disclosure provide a touch display panel and a touch display apparatus, which can reduce a width of a bezel of the touch display apparatus and meet a requirement for a narrow bezel of the touch display apparatus. The touch display panel comprises: a plurality of first electrode lines disposed in a first direction; a FPC located above or below a display area; and first electrode wirings each electrically connected to the respective first electrode line correspondingly, wherein each of the first electrode wirings is led from a side of the display area which is close to the FPC and is electrically connected to the FPC. In this solution according to the embodiment of the present disclosure, each of the first electrode wirings is directly led from the side of the display area which is close to the FPC and would not occupy a width of a bezel; therefore the bezel of the touch display apparatus can be designed as narrower, which greatly meets the requirement for the narrow bezel of the touch display apparatus.
Abstract:
Each column of a touch control driving electrode block matrix in a first substrate of the touch control display device includes first and second touch control driving electrode blocks. A first touch control driving signal is transmitted in turns to the first touch control driving electrode blocks in corresponding matrix columns of the touch control driving electrode block matrix. Gate lines corresponding to the first touch control driving electrode blocks which receive the first touch control driving signal are in a off state; when one gate line corresponding to the first touch control driving electrode block in one matrix column is in the off state, one gate line corresponding to the second touch control driving electrode block in the matrix column is in an on state. A second touch control driving signal is transmitted to the second touch control driving electrode blocks between adjacent display time periods.