摘要:
The present invention is a system and method for efficiently and incrementally updating the statistical timing of a digital circuit after a change has been made in the circuit. One or more changes in the circuit is/are followed by timing queries that are answered efficiently, constituting a mode of timing that is most useful in the inner loop of an automatic computer-aided design (CAD) synthesis or optimization tool. In the statistical re-timing, the delay of each gate or wire is assumed to consist of a nominal portion, a correlated random portion that is parameterized by each of the sources of variation and an independent random portion. Correlations are taken into account. Both early mode and late mode timing are included; both combinational and sequential circuits are handled; static CMOS as well as dynamic logic families are accommodated.
摘要:
The present invention is a system and method for efficiently and incrementally updating the statistical timing of a digital circuit after a change has been made in the circuit. One or more changes in the circuit is/are followed by timing queries that are answered efficiently, constituting a mode of timing that is most useful in the inner loop of an automatic computer-aided design (CAD) synthesis or optimization tool. In the statistical re-timing, the delay of each gate or wire is assumed to consist of a nominal portion, a correlated random portion that is parameterized by each of the sources of variation and an independent random portion. Correlations are taken into account. Both early mode and late mode timing are included; both combinational and sequential circuits are handled; static CMOS as well as dynamic logic families are accommodated.
摘要:
The present invention is a system and method for efficiently and incrementally updating the statistical timing of a digital circuit after a change has been made in the circuit. One or more changes in the circuit is/are followed by timing queries that are answered efficiently, constituting a mode of timing that is most useful in the inner loop of an automatic computer-aided design (CAD) synthesis or optimization tool. In the statistical re-timing, the delay of each gate or wire is assumed to consist of a nominal portion, a correlated random portion that is parameterized by each of the sources of variation and an independent random portion. Correlations are taken into account. Both early mode and late mode timing are included; both combinational and sequential circuits are handled; static CMOS as well as dynamic logic families are accommodated.
摘要:
The present invention is a system and method for determining criticality probability of each node, edge and path of the timing graph of a digital circuit in the presence of delay variations. The delay of each gate or wire is assumed to consist of a nominal portion, a correlated random portion that is parameterized by each of the sources of variation and an independent random portion. Correlations are taken into account. Both early mode and late mode timing are included; both combinational and sequential circuits are handled; static CMOS as well as dynamic logic families are accommodated. The criticality determination complexity is linear in the size of the graph and the number of sources of variation. The invention includes a method for efficiently enumerating the critical path(s) that is/are most likely to be critical.
摘要:
Disclosed is a method for achieving timing closure in the design of a digital integrated circuit or system by selecting portions of the circuit or system to be optimized and portions of the circuit or system in which the effects of such optimization are to be analyzed during the optimization process. Optimized portions will include gates whose design parameters are to be changed, a first analyzed portion includes gates whose delays and edge slews are to be recomputed, and a second analyzed portion includes gates whose ATs and RATs are to be recomputed during optimization. Constraints are imposed at selected boundaries between these portions to prevent unwanted propagation of timing information and to ensure the validity of timing values used during optimization. Through this selection, the size of the problem posed to the underlying optimization method will be reduced, allowing larger circuits or systems to be optimized and allowing optimization to be performed more quickly.
摘要:
A method for performing a hierarchical statistical timing analysis of an integrated circuit (IC) chip design by abstracting one or more macros of the design. The method includes performing a statistical static timing analysis of at least one macro; performing a statistical abstraction of the macro to obtain a statistical abstract model of the macro timing characteristics; applying the statistical abstract model as the timing model for each occurrence of the macro leading to a simplified IC chip design; and performing a hierarchical statistical timing analysis of the simplified chip design. The method achieves a context aware statistical abstraction, where a generated statistical abstract model is instantiated for each macro of the chip during statistical static timing analysis at the chip level, providing a compressed and pruned statistical timing abstraction and reducing the model-size during the statistical abstraction.
摘要:
Disclosed is a method for enhanced efficiency and effectiveness in achieving closure of large, complex, high-performance digital integrated circuits. Circuit macros are re-optimized and re-tuned in the timing closure loop by means of a reformulated objective function that allows the optimizer to improve the slack of all signals rather than just the most critical one(s). The incentive to improve the timing of a sub-critical signal is a diminishing function of the criticality of the signal. Thus all signals are improved during the optimization, with the highest incentive to improve on the most critical signals, leading to faster and more effective overall timing closure.
摘要:
The present invention is a system and method for efficiently and incrementally updating the statistical timing of a digital circuit after a change has been made in the circuit. One or more changes in the circuit is/are followed by timing queries that are answered efficiently, constituting a mode of timing that is most useful in the inner loop of an automatic computer-aided design (CAD) synthesis or optimization tool. In the statistical re-timing, the delay of each gate or wire is assumed to consist of a nominal portion, a correlated random portion that is parameterized by each of the sources of variation and an independent random portion. Correlations are taken into account. Both early mode and late mode timing are included; both combinational and sequential circuits are handled; static CMOS as well as dynamic logic families are accommodated.
摘要:
In one embodiment, the invention is a method and apparatus for static timing analysis in the presence of a coupling event and process variation. One embodiment of a method for computing a statistical change in delay and slew due to a coupling event between two adjacent nets in an integrated circuit design includes conducting a statistical timing analysis of the integrated circuit design, computing a statistical overlap window between the adjacent nets, where the statistical timing window represents a period of time during which signals on the adjacent nets can switch contemporaneously and computing the statistical change of delay due to the coupling event, in accordance with the statistical overlap window.
摘要:
A computer system for partitioning the columns of a matrix A. The computer system includes a processor and a memory unit coupled to the processor. Program code in the memory unit, when executed by the processor, implements the method. Matrix A is provided in a memory device and has n columns and m rows; wherein n is an integer of at least 3; and wherein m is an integer of at least 1. The n columns is partitioned into a closed group of p clusters, p being a positive integer of at least 2 and less than n. The partitioning includes an affinity-based merging of clusters of pairs of clusters of the matrix A based on an affinity between the clusters in each pair of clusters being merged. Each cluster consists of one or more columns of matrix A. The p clusters are stored in a computer-readable storage device.