Abstract:
In response to a user equipment (UE) sending data to a first network side device over a first channel and to a second network side device over a second channel, a method includes determining that the first channel separately overlaps the second channel and a third channel. The method further includes allocating, according to priorities of the first channel and the second channel, a first transmit power to the first subframe j and a second transmit power to the second subframe i. The first transmit power is less than or equal to a first power upper limit. A sum of the first transmit power and the second transmit power is less than or equal to a first threshold. A sum of third transmit power of the third subframe i+1 and the first power upper limit is less than or equal to a preset second threshold.
Abstract:
A method and apparatus for allocating and processing sequences in a communication system is disclosed. The method includes: dividing sequences in a sequence group into multiple sub-groups, each sub-group corresponding to its own mode of occupying time frequency resources; selecting sequences from a candidate sequence collection corresponding to each sub-group to form the sequences in the sub-group by: the sequences in a sub-group i in a sequence group k being composed of n sequences in the candidate sequence collection, the n sequences making a |ri/Ni−ck/Np1| or |(ri/Ni−ck/Np1) modu mk,i| function value the smallest, second smallest, till the nth smallest respectively; allocating the sequence group to cells, users or channels. It prevents the sequences highly correlated with the sequences of a specific length from appearing in other sequence groups, thus reducing interference, avoiding the trouble of storing the lists of massive sequence groups.
Abstract:
In an embodiment, a method includes, in response to a user equipment (UE) sending data to a first network side device over a first channel and to a second network side device over a second channel, determining that the first channel separately overlaps the second channel and a third channel. The method further includes allocating, according to priorities of the first channel and the second channel, first transmit power to the first subframe j and second transmit power to the second subframe i, where the first transmit power is less than or equal to a first power upper limit, where a sum of the first transmit power and the second transmit power is less than or equal to a first threshold, and where a sum of third transmit power of the third subframe i+1 and the first power upper limit is less than or equal to a preset second threshold.
Abstract:
A method, a base station, a User Equipment (UE) and a system for sending and receiving Physical Downlink Control Channel (PDCCH) signaling are disclosed. A method includes determining locations of a first search space and a second search space of a User Equipment (UE). A method also includes sending PDCCH signaling with no Carrier Indication Field (CIF) to the UE in a physically overlapped region between the first search space and the second search space if the physically overlapped region exists and a length of the PDCCH signaling with no CIF in the first search space is equal to a length of PDCCH signaling with the CIF in the second search space.
Abstract:
A method, a base station, a User Equipment (UE) and a system for sending and receiving Physical Downlink Control Channel (PDCCH) signaling are disclosed. A method includes determining locations of a first search space and a second search space of a User Equipment (UE). A method also includes sending PDCCH signaling with no Carrier Indication Field (CIF) to the UE in a physically overlapped region between the first search space and the second search space if the physically overlapped region exists and a length of the PDCCH signaling with no CIF in the first search space is equal to a length of PDCCH signaling with the CIF in the second search space.
Abstract:
A method, a base station, a User Equipment (UE) and a system for sending and receiving Physical Downlink Control Channel (PDCCH) signaling are disclosed. A method includes determining locations of a first search space and a second search space of a User Equipment (UE). A method also includes sending PDCCH signaling with no Carrier Indication Field (CIF) to the UE in a physically overlapped region between the first search space and the second search space if the physically overlapped region exists and a length of the PDCCH signaling with no CIF in the first search space is equal to a length of PDCCH signaling with the CIF in the second search space.
Abstract:
Embodiments of this application disclose example data processing methods and example apparatuses. One example method includes determining, by a first terminal device based on a parameter group, a first sequence including N elements, where the parameter group includes a first parameter, a second parameter, and a cyclic shift value, the first sequence is obtained by performing cyclic shift on a second sequence based on the cyclic shift value, and the second sequence is determined based on the first parameter and the second parameter. The first terminal device can then send a signal to a network device based on the first sequence.
Abstract:
This application relates to a sequence detection method and a device. One example method includes receiving a first sequence carried on a plurality of subcarriers; differentiating the first sequence based on L granularities, to obtain a first differential sequence set comprising L sequences; determining K candidate frequency domain root sequences in the U candidate frequency domain root sequences based on differential sequence cross correlation value sets corresponding to the U candidate frequency domain root sequences; and determining a candidate frequency domain root sequence and a time domain cyclic shift value that correspond to the first sequence, based on the first sequence and the K candidate frequency domain root sequences.
Abstract:
A method and apparatus for allocating and processing sequences in a communication system is disclosed. The method includes: dividing sequences in a sequence group into multiple sub-groups, each sub-group corresponding to its own mode of occupying time frequency resources; selecting sequences from a candidate sequence collection corresponding to each sub-group to form the sequences in the sub-group by: the sequences in a sub-group i in a sequence group k being composed of n sequences in the candidate sequence collection, the n sequences making a |ri/Ni−ck/Np1| or |(ri/Ni−ck/Np1) modu mk,i| function value the smallest, second smallest, till the nth smallest respectively; allocating the sequence group to cells, users or channels. It prevents the sequences highly correlated with the sequences of a specific length from appearing in other sequence groups, thus reducing interference, avoiding the trouble of storing the lists of massive sequence groups.
Abstract:
Example control channel resource indication methods, user equipment, and network devices are described. One example method includes sending a preamble signal sequence by a user equipment. The user equipment receives higher layer signaling corresponding to the preamble signal sequence. The higher layer signaling is indicated by downlink control information carried in a common search space. A time-frequency resource detected by the user equipment when determining a control channel includes the common search space and user equipment-dedicated search space. The user equipment determines frequency domain resource location information of the user equipment-dedicated search space based on the higher layer signaling. The frequency domain resource location information includes a quantity of frequency domain resource units occupied by the user equipment-dedicated search space in frequency domain and a location of the frequency domain resource unit.