Abstract:
According to one embodiment, a display device includes a display panel, a third transparent substrate, a light-emitting element, and a modulation element. The display panel includes a first transparent substrate, a second transparent substrate, a first liquid crystal layer of a polymer dispersed type held. The third transparent substrate has a first end portion. The light-emitting element is opposed to the first end portion. The modulation element includes a fourth transparent substrate and a fifth transparent substrate disposed between the light-emitting element and the first end portion, a second liquid crystal layer, and control electrodes for applying voltage to the second liquid crystal layer.
Abstract:
A liquid crystal panel is provided and includes first and second substrates with liquid crystal layer therebetween; and first electrode in display region; second electrode disposed between first electrode and first substrate; and alignment film having alignment direction, wherein first electrode has: pair of electrode branches; slit between pair of electrode branches; first and second connections connecting pair of electrode branches; wherein first electrode has areas including first and second bent portions, main portion disposed between first and second bent portions, wherein first bent portion is adjacent to contact hole of first electrode, wherein first and second bent portions are bent relative to main portion, and wherein direction of first bent portion is substantially parallel to direction of second bent portion.
Abstract:
According to an aspect, a display device with a touch detecting function includes: a substrate; a display area; a touch detection electrode provided with a plurality of conductive thin wires, each of the conductive thin wires including a plurality of thin wire pieces each having a linear shape and including a first end and a second end; a drive electrode; and a display functional layer. The adjacent thin wire pieces are arranged so as to be bent at a bent portion serving as a portion at which the second end of the one thin wire piece of the adjacent thin wire pieces is connected to the first end of the other thin wire piece of the adjacent thin wire pieces, and the conductive thin wires include a bent portion having an angle formed by the adjacent thin wire pieces different from angles of the other bent portions.
Abstract:
According to one embodiment, a sensor-equipped display device includes a display panel, a detection electrode, a conductive member arranged at intervals from the display panel and the detection electrode, and controller. In a first sense period, the controller drives a common electrode of the display panel or the detection electrode and extracts input position data from the detection electrode. In a second sense period, the controller drives the conductive member and extracts first input pressure data from a first electrode, the controller drives a second electrode and extracts second input pressure data from the conductive member, or the controller drives a third electrode and extracts third input pressure data from the third electrode.
Abstract:
According to an aspect, a display device with a touch detection function includes: a substrate; a display area in which pixels each constituted by different color regions are arranged in a matrix and that includes color columns in which the color regions of the same colors extend side by side; a touch detection electrode that includes a plurality of conductive thin wires; and a drive electrode. Each of the conductive thin wires includes a plurality of portions at each of which the conductive thin wire extends in a direction at an angle with respect to a direction of extension of the color regions, and a plurality of bent portions at each of which the conductive thin wire is bent with the angle changed. The conductive thin wires include portions each overlapping all of the color columns in a direction orthogonal to the surface of the substrate.
Abstract:
According to one embodiment, a display device includes an illumination unit, a polarizing element which transmits a specific polarized component of light entering from the illumination unit, a display panel which transmits the polarized light entering from the polarizing element while maintaining or converting a polarized state, an optical element comprising a transmission axis which transmits first linearly polarized light, which transmits or reflects the light entering from the display panel and a reflective element which retro-reflects the light reflected by the optical element, and the display panel and the reflective element face one surface of the optical element.
Abstract:
According to an aspect, a display device with a touch detecting function includes: a substrate; a display area; a touch detection electrode provided with a plurality of conductive thin wires, each of the conductive thin wires including a plurality of thin wire pieces each having a linear shape and including a first end and a second end; a drive electrode; and a display functional layer. The adjacent thin wire pieces are arranged so as to be bent at a bent portion serving as a portion at which the second end of the one thin wire piece of the adjacent thin wire pieces is connected to the first end of the other thin wire piece of the adjacent thin wire pieces, and the conductive thin wires include a bent portion having an angle formed by the adjacent thin wire pieces different from angles of the other bent portions.
Abstract:
According to one embodiment, a display device includes a switching liquid crystal unit, a display, and a controller. The switching liquid crystal unit includes optical elements switching an aperture pattern including an aperture portion and a light-shielding portion. The display overlaps the switching liquid crystal unit and displays parallax images including right and left eye images. The controller acquires positional information relating to a position of a viewer, and controls a position of the aperture pattern. The controller switches the aperture pattern from a first aperture pattern to a second aperture pattern so that a right eye always views the right eye image and a left eye always views the left eye image, and starts the switching before the viewer moves to an optimal switching position where a luminance viewed from the first aperture pattern is substantially equal to a luminance viewed from the second aperture patterns.
Abstract:
According to one embodiment, a display device includes a switching liquid crystal unit, a controller, and a display. The switching liquid crystal unit includes first and second polarizing layers, first and second substrate units, and a liquid crystal layer. The first substrate unit includes a first substrate provided between the polarizing layers, inner electrodes provided between the first substrate and the second polarizing layer, an insulating layer provided between the first substrate and the inner electrodes, and outer electrodes provided between the first substrate and the insulating layer. The second substrate unit includes a second substrate provided between the first substrate unit and the second polarizing layer, and a counter electrode provided between the second substrate and the first substrate unit. The liquid crystal layer is provided between the substrate units. The controller controls potentials of the electrodes. The display emits light including a parallax image.
Abstract:
In a three dimensional display device of a parallax barrier system in which an IPS-mode liquid crystal display panel is used as a liquid crystal display panel for displaying images and a TN-mode liquid crystal panel is used as a parallax barrier panel, alignment axes of a counter substrate and a barrier substrate constituting the parallax barrier panel are set to 45 degrees and 135 degrees, respectively, with respect to a horizontal direction of a screen. This allows an improvement in the viewing angle characteristics of the parallax barrier panel and an improvement in the viewing characteristics of the overall three dimensional display device of the parallax barrier system. Thus, even when the line of sight moves, crosstalk between an image for a right eye and an image for a left eye can be prevented thereby allowing a viewer to recognize excellent three dimensional images.